ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 3 ABGABE: 07.11.2016

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. (4 Punkte)

(a) Es seien $a, b \in A$ Elemente einer C*-Algebra. Zeigen Sie, dass, wenn a und b kommutieren, folgendes gilt:

$$0 \leqslant a \leqslant b \implies 0 \leqslant a^2 \leqslant b^2. \tag{1}$$

(b) Finden Sie ein Gegenbeispiel zu (a), wenn a und b nicht kommutieren.

Aufgabe 2. Sei A eine C*-Algebra, so dass (1) für beliebige $a, b \in A$ gelte. Zeigen (4 Punkte) Sie: A ist kommutativ. Hinweise:

- (a) Zeigen Sie: Ist xy selbstadjungiert für alle $x, y \in A_+$, so ist A kommutativ.
- (b) Seien $x,y\in A_+$ und xy=a+ib mit $a,b\in A_{sa}$. Zeigen Sie: $a\geqslant 0$.
- (c) Sei

$$E := \{ \alpha \geqslant 1 \mid \forall x, y \in A_+, a, b \in A_{sa} : xy = a + ib \Rightarrow \alpha b^2 \leqslant a^2 \}.$$

Zeigen Sie, dass E abgeschlossen ist und $1 \in E$ gilt.

(d) Angenommen, E sei beschränkt und $\lambda := \sup E$. Zeigen Sie für alle $x, y \in A_+$ mit xy = a + ib die Ungleichungskette

$$\lambda^2 b^4 \le \lambda (ab + ba)^2 \le (a^2 - b^2)^2 \le a^4 + b^4 - 2\lambda b^4$$

und führen Sie damit die Annahme zum Widerspruch.

(e) Zeigen Sie: Wenn $x, y \in A_+$, $a, b \in A_{sa}$ mit xy = a + ib, so ist b = 0.

Aufgabe 3. Zeigen Sie: $\min(\cdot, 1)$ ist nicht operator-monoton auf $M_2(\mathbb{C})$. (2 Punkte)

Aufgabe 4. Man berechne $\operatorname{Spec}_{\mathfrak{m}}(M_2(\mathbb{C}))$. (2 Punkte)