ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 2 ABGABE: 31.10.2016

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. Man beweise Proposition A.2.2 aus dem Skript:

(6 Punkte)

Sei X ein kompakter Hausdorffraum und $A\subseteq \mathcal{C}(X,\mathbb{R})$ eine abgeschlossene unitale Unteralgebra. Trennt A die Punkte von X, so gilt $A=\mathcal{C}(X,\mathbb{R})$.

Dazu zeige man die folgenden Behauptungen:

(a) Seien $x_1 \neq x_2 \in X$ und c_1, c_2 reelle Konstanten. Dann gibt es $f \in A$ mit

$$f(x_1) = c_1, \ f(x_2) = c_2.$$

- (b) Für $f \in A$ gilt auch $|f| \in A$. (Hinweis: Approximationssatz von Weierstrass; alternativ kann man zeigen, dass für $g \in A$ mit $g \geqslant 0$ auch $\sqrt{g} \in A$ gilt.) Ferner gilt: Für $f, g \in A$ ist $\max(f,g) \in A$ und $\min(f,g) \in A$.
- (c) Seien $f \in \mathcal{C}(X, \mathbb{R})$, $x \in X$ und $\epsilon > 0$. Dann existiert $g_x \in A$ mit $g_x(x) = f(x)$ und

$$g_x(t) > f(t) - \epsilon, \ t \in X.$$

(Hinweis: Kompaktheit von X und (a).)

(d) Sei $f \in \mathcal{C}(X,\mathbb{R})$. Für jedes $\epsilon > 0$ existiert $h \in A$ mit $||h - f||_{\infty} < \epsilon$.

Aufgabe 2. Es sei A eine C*-Algebra und $a \in A$ normal. Sei $B \subseteq A$ die von a (4 Punkte) erzeugte C*-Unteralgebra. Zeigen Sie:

- (a) Es gilt $\sigma_A(a) \setminus \{0\} = \sigma_B(a) \setminus \{0\}$.
- (b) Für alle $z \in \sigma(a) \setminus \{0\}$ gibt es genau ein $\chi_z \in \widehat{B}$ mit $\chi_z(a) = z$.
- (c) Die Abbildung

$$\Phi_a: B \longrightarrow \mathcal{C}_0(\sigma(a) \setminus \{0\}), \quad \Phi_a(b)(z) \coloneqq \chi_z(b)$$

ist ein isometrischer *-Isomorphismus.

(d) Φ_a setzt sich fort zu einem isometrischen *-Isomorphismus $\widetilde{B} \longrightarrow \mathcal{C}(\sigma(a))$.

Aufgabe 3. Sei $f: \mathbb{C} \longrightarrow \mathbb{C}$ stetig mit f(0) = 0. Zeigen Sie: Ist A eine C*-Algebra (2 Punkte) und sind a, a_n normaler Elemente mit $a = \lim_{n \to \infty} a_n$, so gilt $f(a) = \lim_{n \to \infty} f(a_n)$.

Aufgabe 4. Sei A eine C*-Algebra. Zeigen Sie: Jedes $a \in A$ ist die Linearkombination von vier unitären Elementen.

Hinweis: Betrachten Sie zunächst selbstadjungiertes a; dazu folgende Abbildung:

