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2 A. ALLDRIDGE

1. INTRODUCTION
2. CATEGORIES

2.1. Categories, functors, and natural transformations.

Definition 2.1. A category C consists of the following data:

e A class ObC(, the elements of which are called objects;

e for any pair (X,Y") of objects, a set Home (X, Y) = Hom(X,Y), the
elements of which are denoted f : X — Y and called morphisms
from X to Y;

e and for any triple (X,Y, Z) of objects, a composition map

o:Hom(Y,Z) x Hom(X,Y) - Hom(X,Z) : (g, f) = go f

—fulfilling the following conditions:

(i). For any object X, there is a morphism idx =id : X — X, called
the identity of X, such that foid = f and id o g = g whenever this
makes sense;

(ii). composition is associative, that is, (hog)o f = ho(go f) whenever
this makes sense.

It is a standard fact that the morphisms idx are unique. A morphism
f: X =Y is called an isomorphism if there exists a morphism g : Y — X
such that go f = idx and f o g = idy. In this case, g is unique, and we
denote g = f~!. One writes X 2 Y if there exists an isomophism X — Y;
in this case, one says that X and Y are tsomorphic.

A subcategory D of C is given by:

e a subclass ObD C C and
e subsets Homp(X,Y) C Home(X,Y), for any X, Y € ObD

—such that:

(i). For any object X € ObD, idx € Homp (X, X),
(ii). and gof € Homp(Z, X) for any g € Homp(Z,Y), f € Homp(Y, X).

Clearly, any subcategory of a category is itself a category. A subcategory
D of a category C is called full if Homp(X,Y) = Hom¢(X,Y) for all objects
X, Y of D. So a full subcategory is specified just by a subclass of the objects.

Example 2.2.

(1). The category Sets is the category of sets and maps, with the usual
composition. A full subcategory is given by the finite sets.

Other examples of subcategories of Sets are vector spaces and linear
maps, groups and group homomorphisms, rings and ring homomorphisms,
topological spaces and continuous maps, etc. None of these is full.

An example of a full subcategory of the category of vector spaces is the
category of finite-dimensional vector spaces.

(2). Any group G gives rise to a category C, where we take ObC = {1},
Hom(1,1) = G, and the composition to be the group law. In this category,
any morphism is an isomorphism. (Such a category is called a groupoid.)
The category C is an example of a category which is not a subcategory of Sets
(although, in a sense to be defined, it is isomorphic to such a subcategory).
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(3). Let X be a set. A preorder < on X is a reflexive and transitive
relation. It is called an order (resp. equivalence relation) if in addition, it is
antisymmetric (resp. symmetric).

One defines a category C by taking ObC = X and

Hom(n.y) — | (@) =<y
’ %)} otherwise

This already determines the composition on C. (It is given by the rule
(z,y) o (y,x) = (2, z) for composable morphisms.)

If X is arbitrary, there are some universally existant preorders. For
instance, < might just be equality. (As a subset of X x X, this is the
diagonal.) At the other extreme, one may take x < y to be verified for all
x,y € X. (As a subset of X x X, this is all of X x X.) These are examples
of equivalence relations on X; in fact, any equivalence relation is a preorder.

In fact, it is easy to see that C is a groupoid if and only if < is an
equivalence relation. At the other extreme, < is an order if and only if the
only isomorphisms in C are id;, z € X.

There is an amusing equivalence relation on X x X. Namely, define < by

(z,y) < (w,0) = (2,9) = (v,0) or (z,y) = (v,u) .
We will have occasion to use it in the proof of Proposition 3.18.

Exercise 2.3. Let C be a category such that X = Ob( is a set. Show that
if C is discrete, i.e. Hom(x,y) has at most one element for all z,y € X, then
(up to some identification of hom-sets) C is associated with a preorder.

Definition 2.4. Let C and D be categories. A functor F :C — D is given
by the following data:

e A map F:0ObC — ObD and
e maps Home(X,Y) — Homp(F(X), F(Y)), also denoted by F
—such that:
(i). For any X € Ob(C, F(idx) = idp(x), and
(ii). for any morphisms f: X — Y, ¢g:Y — Z in C, one has the equality
F(go f)=F(g) o F(f).

One also says that F' is a covariant functor. A contravariant functor is
a functor C°? — D. By definition, any (covariant or contravariant) functor
sends isomorphisms to isomorphisms.

For any category C, there is an identity functor id¢ = id : C — C which
is the identity on objects and morphisms. There is also a contravariant
functor C — C°, given as the identity functor of C°P. A functor is called
an isomorphism of categories if there exists a functor G : D — C such that
Go F =id¢ and F o G = idp.

Isomorphisms of categories are rather rare, and it is usually more convenient
to consider a weaker form of equivalence, defined as follows.

A functor is called fully faithful if for any X,Y € Ob(C, the map on
morphisms F' : Home(X,Y) — Homp(F(X), F(Y)) is bijective. It is called
essentially surjective if for any object Y of D, there exists X € ObC such
that F'(X) is isomorphic to Y. It is called an equivalence of categories if and
only if it is fully faithful and essentially surjective.
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Example 2.5.

(1). The embedding of a full subcategory is a fully faithful functor.

(2). Let k be a field. Let C be the category whose objects are k™, n € N,
and whose hom-sets are Home (k™, k™) = k™*", where composition is given
by matrix multiplication. Let D be the category of finite-dimensional k-vector
spaces and linear maps. Define F(k™) = k™ and F(A), A € k"™, to be the
linear map k™ — k™, x +— Ax given by multiplication of the matrix A with
column vectors. Then F' is an equivalence of categories.

(3). The natural contravariant functor C — C is a contravariant isomor-
phism. (It is an isomorphism in the category opposite to the category of
categories, see below.)

(4). For categories associated with groups G, H, a functor F' is the same
as a group homomorphism. In this special case, any functor is bijective on
objects and essentially surjective. Hence, the following are equivalent: F' is
a group isomorphism, F' is an isomorphism of categories, F' is an equivalence
of categories, and F' is fully faithful.

(5). Given any category C, one defines the opposite category C°P by taking
Ob(C? = ObC, Homgor(X,Y) = Home (Y, X), and g o? f = fog as the
composition. Clearly, (C°P)P = C.

If C is the category associated with a group G, then CP is associated with
the opposite group. One has C = C° if and only G is Abelian.

If C is the category associated with a preorder, then C°P is associated with
the opposite relation. One has C = C if and only if < is an equivalence
relation.

(6). If X € ObC, then Hom(X, —) is a covariant functor C — Sets, and
Hom(—, X)) is a contravariant functor C — Sets. On morphisms f:Y — Z,

Hom(X, f) : Hom(X,Y) - Hom(X,Z): g+ fog
Hom(f, X) : Hom(Z, X) - Hom(Y, X): g~ go f

We will use the functor Hom(—, X)) quite frequently, so it is useful to
introduce a less cumbersome and more intuitive notation: Namely, we write
X(—) =Hom(—,X). For Y € Ob(C, X(Y) is called the set of Y -points of
X. We write y €y X for the relation y € X(Y').

This makes sense for the following reason: For C = Sets, let * the singleton
set. (Of course, there many such sets, but they are all isomorphic.) An point
x € X is the same as a map * — X. In other words, X (x) = X, so that the
‘generalised points’ (that is, the elements of X (Y") for some Y'), are really a
generalisation of the ordinary points of X.

As we shall see below, more is true: The concept of generalised points will
allow us to consider any object in any category as a (parameter-dependent)
set, and any morphism as a (parameter-dependent) map of sets.

Definition 2.6. Let F,G : C — D be functors (contravariant functors).
A natural transformation or functor morphism 6 : Fy — Fj is given by
morphisms 0x : F(X) — G(X) in D, for each X € ObC, subject to the
following condition: For any morphism f : X — Y in C, the following
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diagram is commutative:

(In the contravariant case, the orientation of the vertical arrows is inverted.)
Given natural transformations 6 : F — G, ¢/ : G — H, one defines the
horizontal composition 8" 0 : F — H by (0’ 0 §)x = 0y o 0x.
Setting aside set-theoretical objections, there is a category of categories
and natural transformations. A natural transformation is called a natural
equivalence or functor isomorphism if it is an isomorphism in this category.

Exercise 2.7. A functor G : D — C is called a quasi-inverse of F': C — D
if GoF Zide and F o G = idp. Show that F' is an equivalence of categories
if and only if it possesses a quasi-inverse.

Definition 2.8. A functor (resp. contravariant functor) F' : C — Sets is called
representable if there is X € ObC such that F' = Hom(X, —) (resp. F =
Hom(—, X)). In this case, X is unique up to canonical isomorphism, and is
called a representative of F.

2.9. For a category C, let CV denote the category of contravariant functors
C — Sets and natural transformations. Define a functor h : C — CV by
h(X)=Hom(—, X) = X(—) and
h(f: X —Y)=Hom(—, f) : Hom(—, X) — Hom(—,Y) ,
h(f)z = Hom(Z, f) : Hom(Z, X) — Hom(Z,Y) .

While the above notation is more or less standard, we will want to introduce
a more succinct terminology, in keep with our policy concerning generalised
points: For a morphism f : X — Y and z €z X, we denote f(z) = f o z.

Then h(f)z = Hom(Z, f) is simply the maps of sets f(—) which sends
z €z X to f(z) €z Y. Moreover, the functoriality of h : X — X(—),
f = f(—) is expressed by the equation (go f)(z) = g(f(2)).

The following proposition is known as the Yoneda Lemma.

Proposition 2.10. For any X € ObC and F € ObCY, we have
Homev (X (—), F) 2 F(X) .
In particular, h is fully faithful.

Proof. Let us define a map ¢ : Homev (X (—), F') — F(X). To that end, we
observe that for 7 € Homev (X (—), F), nx : X(X) — F(X). So all depends
on the choice of an X-point of X. The only canonical such choice the so-called
generic point x €x X, which is x = idx. So we set ¢(nx) = nx(z).

Conversely, for y € F(X), we let ¢(y) be the natural transformation
consisting of the maps ¥(y)z : X(Z) — F(Z) which send z : Z — X to
F(z)(y). Since F(x) = idp(x), we have that ¢(¢(y)) = ¥(y)x(z) = y.
Finally, if y = nx(x), then

b(y)z(2) = F(2)(y) = F(2)(nx(2)) = nz(2(2)) = nz(2)
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by the naturality of . This proves that ¢ and 1 are mutually inverse, and
establishes the asserted bijection.
To see that h is fully faithful, we insert Y'(—) for F' to obtain
Homev (X (—),Y(—)) 2Y(X) = Home(X,Y) .

We need to check that the inverse bijection (viz. 1) is just the hom-set map
of h. So, for f: X — Y, compute

P(f)z(2) =Y (2)(f) = f(2) = h(f)z(2) -

This proves the claim. O

Remark 2.11.

(1). The contravariant functors F'in the essential image of h, i.e. F' = X (—)
for some X € Ob(, are exactly the representable ones.

(2). An important use of the Yoneda Lemma is in defining morphisms.
A morphism f : X — Y in any category is determined uniquely by its
values f(s) €s Y on generalised points s €g X. (A tautology: One has
f(z) = f, for v €x X the generic point.) But more is true: Given set maps
fs : X(S) = Y(S), s — fs(s), there is a (unique) morphism f: X — Y
such that f(s) = fs(s) for all s €g X, if and only if the collection fg is
natural, that is, if for any morphism g : T'— S, fr(sog) = fs(s)og.

2.2. Adjoints and limits.

Exercise 2.12. Let F':C — D and G : D — C be functors. Prove that the
following are equivalent:

(1). There are natural transformations
a:FoG—idp and f:id¢g > GoF

such that the following composites are the identity transformation:

¢ arG %G
and
JLy e Ly
Here, (BG)y = Bay), (Ga)x = G(ax), etc.
(2). There is a natural isomorphism Homp(F—, —) = Hom¢(—,G—) as

functors C°? x D — Sets.

We will frequently express the latter statement as follows: “There is a
natural isomorphism Homp (F(X),Y) = Home (X, G(Y)), as X runs through
C and Y runs through D.”

Definition 2.13. In the situation of the above exercise, I is called a left
adjoint of G, and G is called a right adjoint of F. The pair (F,G) is called
an adjunction. The natural transformations o and g are called the counit
and unit, respectively, of the adjunction.

Proposition 2.14. Let F : C — D be a functor. Then F possesses a right
adjoint G (say) if and only for any Y € ObD, the contravariant functor
Homp(F—,Y) is representable. In this case, G(Y') is a representative.

A similar statement holds for the existence of left adjoints of G.
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Remark 2.15. As the proposition shows, adjoints are determined uniquely
up to natural equivalence.

Proof of Proposition 2.14. The condition is clearly necessary, by part (2) of
Exercise 2.12. Conversely, let G(B) be a representative of Hom(F—, B).

Then 6% : Home (X, G(B)) = Homp(F'(X), B). In particular,
08 4) - Home(G(A), G(B)) — Homp(F(G(A)), B) ,
65" . Home (X, G(F(Y))) —» Homp(F(X), F(Y)) .
Since 67 is a natural transformation for any B, we have for h: Z — X,
Homp (F(h), B) 0 08 = 65 o Home(h, G(B)) .
This amounts, for f: X — G(B) and h: Z — X, to the equation
(2.1) 0% (f) o F(h) =05 (foh).
We define ay : F(G(A)) - A and Bx : X — G(F(X)) by
aa =054 (idgra)) and 0 (Bx) = idpx) -

(In passing, observe that a4 corresponds to #4 under Yoneda’s isomorphism. )
Furthermore, for g : A — B, define G(g) : G(A) — G(B) by

9§(A) (G(g)) =goaa .
For g : A — B, we have by Equation 2.1,
ap o F(G(9)) = 06 (idas)) o F(G(9))
= 08 (i[da(s) 0 G(9)) = 05(4)(G(9)) =goaa .
This and Equation 2.1 allow us to compute, for g: A — Band h: B — C,
98(,4) (G(h) o G(g)) = 98(3)(G(h)) o F(G(g)) = ho (ap o F(G(g)))
— (hog)oan=05(Glhog)) .

Since Hé(A)(G(idA)) = idgoag = ay = Gé(A)(idg(A)) by definition, this
shows that G is a functor.

Now, we have already proved that . : FG — idp is a natural transforma-
tion. We have, again by Equation 2.1,

ar(x) © F(Bx) = 0g(n(xy (daerx)) © F(Bx)
— 05X (idgrex) oBx) = 057 (Bx) = idpx)
This, together with Equation 2.1, allows us to compute, for f: X — Y,
O (GIE(F)) © Bx) = Oy (GIE())) © F(Bx)
= F(f)capx)o F(Bx) =idpyy oF (f)
=6y (By) o F(f) = 63 (By o f) .

so that 5 :id¢ — GF is a natural transformation.
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We have already proved that aF' o F'§ = idp. Using this relation and once
again Equation 2.1, we compute,

064y (G(aa) © Baay) = 06 r(aay) (Glaa)) o F(Baa)
= QA O Qp(G(A)) © F(BG’(A)) =y = Qé(A)(ldG(A))

which proves that Ga o G = idg. We have checked all the conditions in
part (1) of Exercise 2.12, and this proves the assertion. O

Example 2.16. Let D be the category of left modules and module homomor-
phisms over some ring R. Let GG : D — Sets which assigns to each module
the underlying set and to each module homomorphism the underlying map
of sets. (This is an example of which is called a forgetful functor.)

Then G has a left adjoint, namely the functor F' which assigns to each
set X the free left R-module F(X) = R(X), and to each maps f: X — Y
the unique R-module homomorphism F(f) : R(X) — R(Y) such that
F(f)(x) = f(z) for all z € X.

In particular, for R = Z, D is the category of Abelian groups, and F gives
the free Abelian group of a set.

Remark 2.17. The preceding example indicates that adjoint functors provide
a systematic way of dealing with universal constructions.

Namely, if (F,G) is an adjunction, then for each X € ObC, we have
F(X) € D and a morphism fx : X — G(F (X)) satisfying the following
universal property: For any A € ObD and any morphism f : X — G(A),
there is a unique morphism f : A — F(X) such that f = G(f) o x. That
is, the following diagram commutes:

e G(F(X))
X < 3G(f)
TG

The dual statement holds for G(A) and a4. Both can be derived from the
proof of Proposition 2.14.

Definition 2.18. Let (J,<) be a preordered set, and C a category. A
projective system (X, fi;) in C, indexed over J, consists of X; € ObC, i € J,
and of morphisms f;; : X; — X; for i < j, such that

fii=1id and fijjo fjr = fir forall i <j<k.

Thus, if we denote by J the category associated with the preorder, a
projective system is just a contravariant functor J — C. Similarly, a functor
J — C is called an inductive system; that is, it consists of objects X;, i € J,
and morphisms f;; : X; — X for i < j, such that f; =id and fjr 0 fij = fir-

Let (Xj, fij) be a projective system in C, indexed by J. A projective limit
of this system is an object X € Ob(, together with morphisms f; : X — X,
i € J, such that f; = f;; o f;, satisfying the following universal property: For
any Y € ObC and morphisms g; : ¥ — X;, 7 € J, such that g; = fij o g,
there is a unique morphism g : ¥ — X, making the following diagram
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/
Ny

Dually, an inductive limit of an inductive system (X5, fij) in C, indexed by
J, is given by an object X and morphisms f; : X; — X, satisfying f; = fjo fi;
and the universal property encoded by the following commutative diagram:

\
/

2.19. Let C be any category, and J be a category whose object class is
a set. We let C’ be the category of functors J — C and their natural
transformations.

We define the diagonal functor A : C — C’ as follows: For X € ObC,
A(X) is the constant functor j — X, (f : 4 — j) — idy; for h : X = Y,
A(h) is the natural transformation given by A(h); = h for all j € Ob J.

commutative:

Proposition 2.20. Let (J, <) be a preordered set and C a category.

(1). Let F: JP — C be a projective system. Then F has a projective limit
if and only if the functor Homgjor (A—, F') is representable. In this case, the
projective limit is a representative, and in particular, unique up to canonical
isomorphism.

(2). Let F': J — C be an inductive system. Then F' has an inductive limit
if and only if the contravariant functor Homes (F, A—) is representable. In
this case, the inductive limits is a representative, and in particular, unique
up to canonical isomorphism.

Proof. We only prove (1), since (2) is the dual statement (take C to C°P).
First, observe that the elements of Homgsor (A(Y'), F) are simply families
of commutative diagrams for ¢ < 7,

9i

Y X;
B
Y X;

9j
which may also be written in triangular form.

Now, we may use the same construction as in the proof of Proposi-
tion 2.14. If we have a representative X, then by definition, there is a natural
equivalence 0 : Homgjor (A—, F)) — X (—). In particular, there is a natural
transformation f : A(X) — F, given by 0x(f) = idx; this gives a collection
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of morphisms f; : X — X; such that f; = f;; o f; whenever ¢ < j. Moreover,
the (g;) as the above diagram correspond wia 6y bijectively to g : Y — X
such that f; o g = g;. This proves that X, f; are a projective limit of F.
Conversely, if X is a projective limit, then the above discussion gives a
recipe for the construction of bijections 6y : Homgser (A(Y), F) — X (Y),
and it is straightforward to check that they form a natural transformation.
This completes the proof. O

Definition 2.21. If (X, f;;) is a projective (resp. an inductive) system, then
its limit, if it exists, is denoted by imj X (resp. ligj X;).

Corollary 2.22. Let C be a category and J a preodered set. Then any
projective (resp. inductive) system in C indezxed over J possesses a projective
(resp. an inductive) limit if and only if the diagonal functor A : C — C7”
(resp. A : C — C7) possesses a right adjoint G (resp. a left adjoint F ).

In this case, we have

lm X; = G((Xj, fiy))  (resp. lim. X; = F((Xj, fij))
for any such system (X, fi;).
Proof. This follows by applying Proposition 2.14. O

Remark 2.23. In fact, Proposition 2.20 shows how to define @F for any
contravariant functor, and hﬂF for any functor using suitable adjoints (if
they exist). Since any commutative diagram can be viewed as a functor, this
will allow us to consider limits of diagrams. We will not do this very often,
but occasionally, this point of view will be useful.

Example 2.24.

(1). If J is any set and < is equality (i.e. x < y if and only if z = y), then
the projective limit of X (if it exists) is called the product and denoted by
[Ijc; Xj- It comes with morphisms p; : [[;c; X; — Xj for all j € J. It is
characterised by the universal property that given morphisms g; : ¥ — X
for some object Y, there is a unique morphism g : Y — [] jes Xj such that
pj 0 g = g;. The morphism g is often denoted as a tuple (g;);je..

In particular, whenever one is given morphisms f; : X; — Y}, one may
define g; : [[;c; X; = Yj by g; = fjopj. The morphism [[,c; X; = [[;e;Y)
obtained by the universal property is often denoted by [ | jeg fi- T X; =Y for
all j € J, one may also construct oy : Y — [] jed Y by requiring p;ody = idy
for all j € J. This is the so-called diagonal morphism.

(2). A special case of product is in given by the case of J = &. The empty
product (if it exists) is usually denoted by *. It is characterised by the
property that for any object Y, there is a unique morphism Y — *. For this
reason, the empty product is also called the terminal or final object of C.

The category Sets has a terminal object, given by a singleton set. The
category of modules over a ring also has a terminal object, the trivial module.

(3). If J is any set and < is equality, then the inductive limit of X; (if
it exists) is called the coproduct and denoted by Hje 7 Xj. It comes with
morphisms 7; : X; — X and is characterised by the universal property that
given morphisms g; : X; — Y for some object Y, there is a unique morphism
g: HjeJXJ' — Y such that goi; = g;.
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In the category Sets, coproducts exist, and are given by disjoint unions.
In the category of modules over a ring, coproduct also exist, and are given
by direct sums. In this category, finite products and coproducts of the same
family of objects are isomorphic.

Corollary 2.25. The Yoneda Embedding h commutes with projective limits.
That is, if X = I'&nj X; in C, then X(—) = @j X;(—) inCY.

Proof. Let F : J? — C be the functor corresponding to the projective
system, and A¢ : C — C’* the diagonal functor for C. If X = @j X, then

Homgjor (Ac(Y), F) = Home (Y, X) = X(Y') = Homev (Y (—), X (—))

by Proposition 2.20 and the Yoneda Lemma.

On the other hand, let A¢v : €V — (CV)’® be the diagonal functor for
CY. Then Acv(Y(=)); =Y (=) = [Ac(Y),;](—), and similarly for morphisms.
That is, the Yoneda Embedding intertwines diagonal functors. Thus, the
Yoneda Lemma shows for any Y € Ob(C,

Hom cvysor (Aev (Y (=), X (=) = Home(Ac(Y), X)
Thus, X(—) represents the functor Homcvysor (Acv—, X(—)). In view of
Proposition 2.20, this proves our claim. O

Remark 2.26.

(1). The Yoneda embedding does not commute with inductive limits in
general. Indeed, if C is the category of modules over a ring R, then coproducts
exist and are given by direct sums of modules. However, coproducts in C
are given by disjoint unions.

(2). Corollary 2.25 provides a general recipe for computing projective
limits, and indeed of proving their existence: If T&nj. X;(—) exists in C¥ and

the underlying object (i.e. set-valued contavariant functor) is represented by
X, then X = @j X;.

Indeed, it is also clear that for any Y € ObC, the value of @j X;(—) (f
it exists) has to be given by @j X;(Y'), where the limit is computed in Sets.
Thus, the construction of projective limits can be reduced their construction
in Sets, together with a question of representability.

Proposition 2.27. Let (J, <) be a preordered set.
(1). Let (Xi, fij) be a projective system in Sets, indexed by J. Define
rze X = Vzég : xi:fij(a:j)
and fi : X — X; by fi(x) = x;. Then X = @j X;.

(2). Let (Xi, fij) be an inductive system in Sets, indexed by J. Define
X =]ljes X;/ ~ where ~ is the transitive hull of the relation ~ given for
reX;,yeX; by

zry &= Jk:i<k, j<k, fiulx)= fi(y) .
Let f; : X; — X map x € X; to its equivalence class. Then X = ligj X;.
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Proof. This is left as an exercise. Observe that if < is an order in (2), then
it is not necessary to take transitive hulls. U

With a view towards applications to supermanifolds, we introduce the
following concept.

Definition 2.28. Let C be a category with finite products (i.e. the product of
any finite set of objects exists). A group object in C is a quadruple (G, m,1,e)
where G € ObC, and m : G xG — G, i: G = G and e : x — G are
morphisms, such that the following diagrams commute:

id x4 id xe

id scom GxGE—Gxd Gxx—GxG
GxGxG—">GxG 56‘/4 \T T |m
mxidl im G\ . e/G Cf(T;
Gxl—pf—0 6GGxGm>G><Gm «x Q=G xC

Here, G — * is the unique morphism to the terminal object, G — G X x
is the product of id with this morphism, and similarly for G — * x G.

A morphism of group objects f : (G, m,i,e) — (G',m’,i,€’) is a morphism
f : G — G’ such that

fom=m'o(fxf), foi=iofand foe=¢".

One thus obtains a category of groups objects in C.
By abuse of notation, one usually denotes by G a group object in C, the
morphisms m, ¢ and e being understood.

Corollary 2.29. Let C be a category with finite products. The Yoneda
Embedding induces a fully faithful functor from the category of group objects
in C to the category of contravariant functors on C with values in groups.

Proof. By Corollary 2.25, the Yoneda Embedding induce a fully faithful
functor between the category of group objects in C and CV. Let F € CV.
Then by what we have remarked about projective limits in CV, F' defines a
group object in CV if and only if it defines a functor with values in groups. [

Remark 2.30. For a group object G, the group structure on G(.S) is given by
setting, for s,t €5 G, st = m(s,t), s7' = i(s), and 1g(g) = €(*5) where xg
is the unique morphism S — .

By Corollary 2.29, one shows, using standard facts on groups, that i and
e are uniquely determined by m. Thus, a morphism f : G — G’ between
the underlying objects of group objects in C is a morphism of group objects
if and only if fom = m’ o (f x f), if and only if f(st) = f(s)f(t) for all
S € ObC and all s,t €5 G. The equations f(s7!) = f(s)~! and f(1) =1
are automatically verified.

We end the section by a discussion of iterated limits.

Proposition 2.31. Let I and J be preordered sets. Let X;; € ObC and
[+ Xy — Xij resp. g}j, : Xijr — Xyj for it <1 resp. j < j' satisfy:

(1). For every j € J, (X, fi,) is a projective system indexed by I;
(2). for everyiel, (Xij,g;-j,) s a projective system indezed by J;
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(3). foralli <, j <y, we have
ooy =digofl
Whenever @Z @j Xi; and l'glj in X, exist, they are canonically iso-
morphic. The analoguous statement holds for inductive limits.
Proof. Let K =1 x J, preordered by the relation
(i,j) < (I',j') = i<iandj<j.
For k = (i,j) € K, let let X}, = X;;. For k = (i,j) < K = (¢, '),
hrs = Fly 0 gl = gljr o fl + X = Xunjp — Xij = X, .
Ifk=(i,5) <k'=(@,75)<k'"=(@",j"), then

11

J i’ i’ 5" J i J
hkkl @) hk/k// = fii' o gjj/ o gj/j// o fz"i” - fii’ o gjj// o i
_ £ J i e i’
= [0 fypm o G55 = fiin © 9j5m = higr
s0 (X, hgr') is a projective system indexed over K.
It will be sufficient to show that if 1&12 @j X; exists, then it is a projective

limit of (X, hxr). Indeed, exchanging the role of I and J, the assertion will
follow.
Assume that X = lim, T&nﬂ_ X;; exists. For k = (4,j), we define the

morphism hj : X — X, = X;; as the composition of
fZX%Xl:@]XU and g;Xl—>XU
Consider also the morphisms f;;7 : Xy — X; uniquely determined by
gio fir = fliog; -
By definition, g;-j, o g;v = g;- and fiy o fi = fi.
For k = (i,j) <Kk = (i, j'),
hige © iy = fly 0 gy 0 gy o fr = fly o g5 o fi
=g;o fiwrofi=gjofi=hg.

Now, assume that we are given morphisms ¢ : ¥ — X such that
hir © or =y, for k < k'. For ¢ € I, define ; : Y — X, to be the unique
morphism such that for all j € J, g§ o ¢; = @ where k = (i,7). Define
w; 1Y — X to be the unique morphism such that f; o p = ¢; for all ¢ € I.
Then for k = (i, 7),

hiop=gjofiop=gopi=pk.
Let ¥ : Y — X be any morphism such that hy o1 = . Then for all ¢ € T
and j € J,
gio(fioh) =hpoty =gy,
so @; = f; o for all ¢ € I and it follows that ¢ = 4. Thus, X is indeed a
projective limit of (Xp, hgi ), and this proves the claim. O
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3. SHEAVES
3.1. Presheaves and sheaves.

Definition 3.1. Let X be a topological space and C a category. A presheaf
on X with values in C is a map U — F(U) from open subsets of X to objects
of C, together with the data of morphisms pyy : F(U) — F(V) for any
open sets V C U. It is customary and suggestive to call gy the restriction
from U to V. If C is a subcategory of Sets, then one writes f|y for oy (f).
Usually, the restriction morphisms of a presheaves are understood, although
they are strictly speaking part of the data.

A morphism of presheaves on X, ¢ : F — F' (say), is a collection of
morphisms @y : F(U) — F'(U), for any open U C X, such that all of the
following diagrams commute:

F(U) === F(U)

QVU\L \LQQ/U

F(V)—~F(V)

It is clear how to compose morphisms of presheaves. With this composition
and the obvious identity morphisms, we obtain the category Presh¢(X) of
all presheaves on X with values in C.

In what follows, we will usually consider presheaves with values in gpMod,
for some fixed ring R; for instance, if R = Z, then we will be dealing with
sheaves of Abelian groups, and if R = k is a field, we will be dealing with
sheaves of vector spaces. The category of presheaves in gpMod on X will
be denoted by Presh(X). More generally, the constructions we will perform
work with only notational changes for presheaves with values in any Abelian,
and even, with some restrictions, in any additive category.

Example 3.2. If U C X is open and F is a presheaf on X, then there is
a presheaf F|y on U defined by Fly(V) = F(V) for all open V C U. It is
called the restriction of F to U.

For any open U C X, we let I'(U, F) = F(U), the set of sections over U.
By the definition of morphisms, I'(U, -), which maps F to I'(U, F) = F(U)
and ¢ : F — G to I'(U, ¢) = ¢y, is a functor.

Definition 3.3. Let X be topological space and (U;);c; an open cover of X.
One denotes U;; = U; NU; and Uy, = U; NU; N Uy, for 4,5,k € 1.
Let F € Presh(X). Then F is called a sheaf if the following two axioms
are fulfilled for any open subset U C X and any open cover (U;) of U:
(i). If f,g € F(U) are such that f|y, = g|y, for all i € I, then f = g.
(ii). Given f; € F(U;), i € I, such that fily,, = fjlu,, for all 4,5 € I,
there is f € F(U) such that f|y, = f; for all i € I.
The full subcategory of Presh(X) formed by the sheaves on X is denoted
by Sh(X).

Remark 3.4.  (1). Sheaf axiom (i) implies that (&) = 0. Indeed, @ is
covered by the empty family (U;);c; where I = @&. Hence, if f € F(9), then
flu, = 0 for all i € I, simply because I is empty. Then (i) implies that
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f = 0. More generally, if one takes presheaves with values in an arbitrary
subcategory of sets, then sheaf axioms (i) and (ii) imply that F (@) is a
singleton set. (Thus for some such categories, there are no sheaves.)

(2). The sheaf axioms are equivalent to the statement that for any open
U C X and any open cover U of U, stable by finite intersections, the
morphism F(U) — hm,, _ F (V') given by restriction is an isomorphism.
This may be taken as the definition of a sheaf with values in a category
which has projective limits. In this formulation, it follows that F (@) is a
terminal object (as the projective limit over an empty set).

Many constructions one wishes to apply to sheaves initially only produce
presheaves. Thus, one needs a construction of sheaves from presheaves. We
shall now examine such a construction.

3.5. Let F be a presheaf on X and z € X. We define

(3.1) Fp = limy, F(U)

where U runs over all open neighbourhoods of . The Abelian group F, is
called the stalk of G,, and the image of f in F, is denoted f, and called the
germ of f at x.

This construction is functorial. In particular, for any morphism ¢ : F — G
of presheaves, we obtain morphisms of the stalks ¢, : F — G,.

3.6. Let F be a presheaf on X. For U C X open, let 7T (U) be the subset
of [[,cx F= consisting of all f such that for all € U, there exists an open
open neighbourhood V C U and f € F(V) such that f(y) = fy forally e V.
Then it is clear that FT defines in a natural way a presheaf. Moreover,
there is a canonical morphism F — F*. Clearly, F, = F, for all z € X.

Proposition 3.7. Let F be a presheaf on X.

(). F* is a sheaf, called the sheafification of F.
(ii). (=)" defines a functor Presh(X) — Sh(X), and the canonical
morphism gives a natural transformation 0 : id — (—)7.
(iii). F — FT is an isomorphism if and only if F is a sheaf.
(iv). One has a natural isomorphism Hom(F,G) = Hom(F",G) as G
varies over Sh(X), and F varies over Presh(X). In other words,

sheafification is left adjoint to the inclusion Sh(X) — Presh(X).

Proof. Statements (i) and (ii) are obvious.

Proof of (iii). The map F(U) = [[,cp Fz : f + (fz) is clearly injective if
and only sheaf axiom (i) holds on U. Let F be a sheaf and f € F*(U). For
& € U, there is an open neighbourhood U, C U of = and f* € F(U,) such
that (f*), = f(y) for all y € U,. Then (f*), = (f¥), for all z € U, NU,, and
it follows that f’m\Uzy = fy\Uzy. By sheaf axiom (ii), there is f € F(U) such
that f|y= = f7. In particular, f, = f(z). The converse follows similarly.

Proof of (iv). We have that 6g : G — G is an isomorphism. Consider

Hom(F,G) % Hom(F*,G)

given by ®(p) = 051 ot and ¥(y)) = v o fx. By naturality of 6 (part
(ii)), we have 6g o ¢ = ¢ o 07, and this proves that ¥ o ® = id. Moreover,
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P(U(h))obr = 1pobr for any ¢ € Hom(FT,G). The latter statement implies
that ¥ o ® = id.

Indeed, let 1) o O = 1’ 0 0 where ¢, : F* — G. For f € F(U) and
& € U, choose open neighbourhoods U, C U and f* € F(U,) such that
(f*)y = fly) for all y € U,. Then fly, = 0r v, (f*), so

Yu (v, = Yu, (flu,) = @0 0F)u, (f*) = @' 0 0F)u, (f*) = vy (H)lu, -
By the first sheaf axiom, ¥y (f) = ¥y (f). O

Example 3.8. Let A be an R-module and Ax be the sheafification of U — A.
Then Ax is called the constant sheaf with stalk A. For z € X, Ax , = A.

Corollary 3.9. Let ¢ : F — G be a morphism of sheaves on X. Then ¢ is
an isomorphism if and only if for each x € X, oz : Fz — Gy is.

Proof. Necessity is obvious by the functoriality of the stalk construction.
Conversely, assume that ¢, : F, — G, is an isomorphism for any =z € X.
We obtain an isomorphism

¢="(px): [[ Fo— [] 9= -

zeX reX
Consider the inverse ) = ¢~1. Let U C X be open and ¢ € G(U). Forz € X,

consider f(x) = ¢(g,) € Fp. Let U, C U be an open neighbourhood of z
and f* € F(U,) such that (f*), = f(z). Then oy, (f*)z = ¢z (f(2)) = gu,
so there exists an open neighbourhood V,, C U, of = such that ¢y, (f*]y,) =
ou, (f*)lv, = glv,. In particular, ¢,(f*), = g, for all y € V,, and this
implies (f*), = f(y) for all y € V,,, by construction. Thus, f = (f(z))secv is
contained in F(U). Defining 1y (g) = f, we get a morphism G = G* — F+
which is inverse to ¢ ™. By Proposition 3.7 (iv), this proves the claim. [

Proposition 3.10. Let (Fj,pi;) be a projective system of sheaves on X,
indexed by an preordered set J. Then

F(U) = lim F5(U)

defines a sheaf F, and it is the projective limit of the (Fj, pi;) in Sh(X).
Hence, we denote F = l'glj Fj and call this the projective limit sheaf.

Proof. Recall that F is a sheaf if and only if F(U) = lim ,_ F(V) for any

open U C X and any open cover U which is stable under finite intersections.
Thus, the assertion follows from Proposition 2.31. U

Remark 3.11. Let (Fj, pi;) be a projective system of sheaves. If z € X, then
there is a canonical morphism (@] Fi)e — l'glj Fjz. In general, it is not

an isomorphism.

3.2. Direct and inverse image sheaves. We will now introduce a number
of operations on sheaves, beginning with the direct and inverse image.

Definition 3.12. Let f : X — Y be a continuous map, F € Sh(X), and
G € Sh(Y). The direct image f.F of F under f is the sheaf on Y defined
by the equation f,.F(V) = F(f~4(V)), for any open V C Y. Morphisms
¢ : F — F' are mapped to morphisms f.(¢) : fui F — fF', given by
(fe(@))v = pp-1(1)-
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The inverse image f~'F of G under g is the sheaf on X defined as the
sheafification of the presheaf U+ lim, ) G(V), where V runs over the
open neighbourhoods of f(U) in Y.

As a matter of terminology, it is convenient to refer to the image of
g € G(V) in the injective limit as the germ of g on f(V).

Morphisms ¢ : G — G’ are mapped to morphisms f~1(z) : f71G — f~1¢G’,

. _1 1
given by (f (¢))U - hglVDf(U) wV
We obtain functors
fv:Sh(X) = Sh(Y) and f~':Sh(Y)— Sh(X)
such that (go f)x =g«o fx and (go f)™' = fLog ! whenever g: Y — Z
is continuous. (The second equality is not entirely obvious, but will follow
from the first in view of Proposition 3.15 below.)

Example 3.13. Let j : U — X be the inclusion of the open subset U C X.
Then j~'F = F|y for any sheaf F on X. In particular, by their definition,

5! commutes with projective limits.

Example 3.14. Let f: X — Y be continuous, A an Abelian group. Then
filAy = Ax.

Proposition 3.15. Let f : X = Y be continuous and R be a sheaf of rings
on Y. There is a natural isomorphism

Hom(F, f.G) = Hom(f~'F,G)
as F runs over Sh(Y') and G runs over Sh(X).

3.16. Before we delve into the proof, let us introduce two important natural
transformations which will make the statement of the proposition meaningful.

Let F(U) = hﬂva(U) F(V), so that f~'F = Ft. We exhibit a morphism
ag € Hom(f~1£.G,G) = Hom(ﬁé, G) by defining
agu 13 fG(V) = gl G(fH(V) = G(U)
Vo f(U) Vo f(U)

as the limit of all restriction maps. Since morphisms commute with restriction,
this defines a natural transformation o : f~1 f, — id of functors in Sh(X).

Next, we construct B € Hom(F, f.f~'F). For any open V C Y, we have
V D f(f~1(V)), so there is a canonical morphism

FV)—=  lim  FW)=F((V)) .
WOF(f1(V))
Let 87y be the composition of this map with 0z 1) Manifestly, this
defines a natural transformation 3 :id — f.f~! in Sh(Y).

Proof of Proposition 3.15. According to Exercise 2.12, we need to prove that
the following composites are the identity:

~1(BF)

JRFLE g S

and
Brig
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Let us consider the first composite. By Proposition 3.7, it is sufficient to
compute on the level of the presheaf F, the sheafification of which is fLF.
Let U C X be open, and h € F(U) = @ij(U) F(V). There exist an open
V C Y such that V O f(U) and hy € F(V) such that h is the germ of gy
on f(U).

Then f~1(Bx)u(g9) = Brv(hv) is 0% t-1(1y applied to the germ of hy on
the subset f(f~!(V)) C Y. If we apply ay-17 1 to this, we obtain the germ
of hy on the set f(f~1(f(U))) = f(U), namely, h. Thus, the first composite
is indeed the identity. A similar computation also establishes this fact in the
second case. O

Example 3.17. Let j : U — X be the inclusion of an open subset. Then
the natural transformation id — j,j~! is an equivalence.

This simple observation can be used to glue sheaves by considering projec-
tive limits.

Proposition 3.18. Let U = (U;) be an open cover of X, F; € Sh(U;), i € I,
and ;j ]:j‘Uij — FZ-]Uij be isomorphisms such that

eis =1d , pijpj =1d , @ijojrer =1d  for all i, 5,k €T .
Then there exist a sheaf F € Sh(X) and isomorphisms ¢; : Fly, — Fi

such that i o 9jlu,; = wilv,;. Moreover, F, p; are unique up to canonical
isomorphism.

Proof. Let J = I?; on this set, introduce the following preorder:

(17]) < (k7£) = (17]) - (k7£) or (Z,]) - (Ev k)
For (m,n) € J, consider the open inclusion jn, : Unn — X, and define

—an = ]mn* (]:m|Umn)
Let ¢4 = idfr, for a € J. For a = (m,n), b = (n,m), define

Y € Hom(me fnm) = Hom (J;}L‘?mn* (‘Fm‘Umn) ) ‘Fn‘Um">
= Hom(Fulu,.,.» Fnlv,.,)

to be Ypm. If a = b, then this is consistent with the previous definition,
because @y, = id.

By the assumption, (F,,1q) is a projective system of sheaves on X, so
the projective limit F exists by Proposition 3.10. We obtain morphisms
Y : F — Fq such that ¥,y o ¥ = 9, for any b < a.

Let a = (m,n), b = (n,m). Then F,lv,,, = Fmlv,,, and Ype = ©nm.
Since j,.1 commutes with projective limits, there exists, as indicated by the
dotted line, a morphism F,|v,,, — Flu,., making the following diagram

commutative:
‘Fn | Umn

Pnm
Y| Urnm,

‘Fm | Umn > f| Umn pmn Pnm

w
aUmn\

‘Fm|Umn
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In other words, ¥4lv,,, : Flu,, — Fmlv,,, i an isomorphism (we have
constructed an inverse).

Since F,, is a sheaf, it is the projective limit of the direct images of F,,|v/,.,.,
under the open inclusions U,,,, — U,,, for m fixed and n variable. A similar
remark applies to F|y,,. Thus, we may construct ¢, : F|y,, — Fm as the
projective limit of ¥,|y,,,,, for a = (m,n). Then ¢, is an isomorphism, and
by definition,

Pmn © gpm|Umn = Pmn © wa‘Umn = wb’Umn = gpn’Umn .

This shows existence in the sense of our assertion, and uniqueness can be
similarly derived from the uniqueness of projective limits. U

4. SUPERMANIFOLDS

4.1. Basics.

Definition 4.1. A super-ringed space is a pair X = (X, F) where X, is a
topological space and F is a sheaf of (unital, associative) R-superalgebras.

Here, an R-superalgebra is a real unital associative algebra A with a
Z./2Z-grading A = Ag @ Ay such that A; - Aj C A;y; (mod 2)- By definition,
morphisms of superalgebras are unital and preserve the grading.

A morphism of ringed spaces X = (Xo,F) = Y = (Y, G) is a pair (f, f*)
where f: Xo — Yp is a continuous map and f*: G — f.F (or, equivalently,
f~'G — G is a morphism of sheaves (of R-superalgebras). One obtains the
category SRSp.

Whenever X = (Xp, F) is a super-ringed space and U C X is open, let
Xy = (U, F|v). Such a super-ringed space is called an open subspace of X.
Given an open subspace, there is an inclusion morphism ji; = jl)f Xy — X,
defined by ju = (juo,J;) where jyo is the inclusion of U in Xy, and
Jir jg’(l)}" = Flu — Flu is the identity. A morphism ¢ : X — Y is called
an open embedding if there are an open subset U C Yy and an isomorphism
@ : X — Y|y such that ¢ = jy o ¢ where jy :j[}]/.

Definition 4.2. A supermanifold is a super-ringed space X = (Xo,Ox)
over such that:

(1). X is Hausdorff and paracompact, and

(2). for any = € X, there exist an open neighbourhood U of x and an
open embedding of X|;; into RPI? = (RP, €2 @ A(R9)*) for some p, q.

In this case, we denote dim, X = p|g. If p|g can be chosen independent
of x, then we say that X is of pure dimension or that X has dimension
dim X = plg. An open embedding ¢ : X|y — RPI? is called a local chart.
Given a local chart ¢, the tuple

Wsm) = (W15 Ups 1, 7g) = (@7 (1), 0" (24), 07 (61)5 -+ -, 07 (&g))

where z; are the coordinate projections on RP, and ¢; is the canonical basis
of (R?)*, is called a system of local coordinates. The open subspaces of RPlg
are called superdomains.

The category of SMan of supermanifolds is obtained as the full subcategory
of SRSp consisting of supermanifolds.
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Notation 4.3. If X is a supermanifold, denote Ny the presheaf U — Nx (U)
where Nx(U) is the set of nilpotent elements of Ox(U). If X is of pure
dimension (or if the odd part of dim, X is bounded), then Nx is a sheaf.

Proposition 4.4. Let Xg be a paracompact Hausdorff space. Assume given
an open cover (Uj), supermanifolds X; whose underlying topological space is
Uj, and isomorphisms ;; : Xi|Uij — Xj]Uz.j such that over Usjy,
wijik = ik for all 4,5,k .
There there exists a supermanifold X whose underlying topological space is
Xo, together with isomorphisms ¢; : X; — X|u, such that ¢; o @ij = ¢j;
these data are unique up to canonical isomorphism.
In fact, for any morphisms ; : X; =Y such that ¥i|u,; o pij = ¥ilu,;,
there is a unique morphism 1 : X —'Y such that |y, o p; = ;.

Proof. This follows directly from Proposition 3.18; note that the inductive
system on the level of ringed spaces gets translated into a projective system
on the level of sheaves. (]

Notation 4.5. The supermanifold introduced in Proposition 4.4 is called
the supermanifold obtained by gluing the X; along the ¢;;.

4.2. The maximal ideals m,.

Definition 4.6. Let R be a unital ring. If R possesses a unique maximal
left ideal, then R is called a local ring. In this case, the unique maximal
ideal m is always an ideal, and R/m is a skew-field.

4.7. Fix a supermanifold X, and a point z € Xy. Let mx, C Ox, be the
subset of the stalk which consists of non-invertible elements; in particular,
one has Nx, C mx . Let p|¢ = dim, X; the stalk is entirely determined by
local data, so we may assume that X is a open subspace of RPl9, that X
contains 0, and that z = 0.

Define

plg P _ 100 lg .__ _
OO . ORP\Q,O ) CO - CRP,O ) v/\/;)p = NRP\q,o ) mplq - melqp ;

and let m? C C be the set of germs f such that f(z) = 0. Then m consists
exactly of the non-invertible elements of C}), since a smooth function which
is non-zero at a point is locally invertible. in particular, C§ = R @ m?.

We have Oy = C} @Ng‘q. Let f € (’)g‘q, and decompose f = g+ h

accordingly. If f ¢ my @A/E)p |q, then g ¢ my, and is thus invertible. We
conclude that f is invertible with inverse

e}

> (=g7'h)Fg!

k=0

where the sum is finite since ¢~ 'h is nilpotent. Hence, m?l4 ¢ m? & ./\/E)p|q,
and the converse inclusion is obvious.
Thus, mPl? = mp@./\/aplq; in particular, mPl? is an ideal, and Oglq = RpmPle.

Observe also the following: Since (N \q)q+1 = 0, we have

(4.1) (mPIO)F = mP(mPl9)F=1 for all k> q .
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Proposition 4.8. Let X be a supermanifold, and v € Xo. Then mx , is the
unique maximal ideal of Ox 4; in particular, Ox , s a local Ting. Moreover,
OX@ =R& my ..

Proof. Observe that in any supercommutative superalgebra, any left ideal is
an ideal. Thus, it suffices to show that m, is the unique maximal ideal.

By definition, m; contains any proper ideal of Ox ;, and by the above
considerations, it is an ideal. This proves the first statement, and the rest
has already been checked. U

4.9. For any open U C Xy, f € Ox(U), and = € U, we may define f(x) to
be the unique number A € R such that f — A € m;. Then m, consists exactly
of the germs f such that f(z)=0.

We denote by j5(f) the function z — f(z) on U. Using local coordinates,
one sees that j5(f) is continuous, i.e. ji(f) € Cx,(U). Let Ox, be the
subsheaf of Cx, obtained in this way. Since (X, Ox,) is locally isomorphic
to (RP,Cg5), we have that (Xo,Ox,) is a smooth manifold. By abuse of
notation, we will denote it by Xy. The morphism (idx,, j5) : Xo — X will
be denoted by jg. It is an open embedding of Xy into X.

We say that f € Ox(U) takes values in any given set A C R whenever
the function j3(f) does. Hence, f may take positive values, etc.

In the following proposition, [—]o denotes the functor that takes X to X
and ¢ to .

Proposition 4.10. Let ¢ : X — Y be a morphism of supermanifolds and
x € Xg. For f € T(Oy) and x € Xy, ¢*(f)(z) = f(po(x)). In particular, we
have that ¢*(My,y(2)) C Mx .z, and jo s a natural transformation [—]o — id.

Proof. Let f € Oy(z)- Then ¢*(f — ) = ¢*(f) — A for all A € R. If
A # f(¢o(x)), then this quantity is invertible, since ¢*(1) = 1. There exists
a unique A such that ¢*(f) — A is not invertible, namely, ¢*(f)(x). But this
A must then be equal to f(pg(x)). The other statements are immediate. [

Proposition 4.11. Let X be a supermanifold, p|¢ = dim X. Let f € I'(Ox).
If j2(f) = 0 and f, € m&™ for all x € Xo, then f =0.

Proof. The question is local, so we may assume that X is an open subspace
of RPI9. By assumption, f, € (m2)91 = m2(m29)7 for all z € X, where we
have used (4.1). Let (x,&) be the standard coordinates. We may uniquely
decompose f as f = Zﬁ f5€? where fz € C>°(Xp) and &° = &g, -+ - &g, for

B=A{B%1 <---<Br} C{l,...,q}. Then fz(z) = (f3)(x) =0 for all x € Xy,
whenever |3] > 0. But fz = j;(f) = 0 by assumption, so that f = 0. O

To bring the maximal ideal m, to use, we need some results from algebra.

Definition 4.12. Let R be a unital ring. The Jacobson radical J(R) of R
is the intersection of all maximal left ideals of R.

Lemma 4.13. Let r € R. Thenr € J = J(R) if and only if for all s € R,
1 — sr has a left inverse.

Proof. Let r € J and assume, secking a contradiction, that R(1—sr) C R for
some s € R. There exists a maximal left ideal m C R containing R(1 — sr).
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On the other hand, J being a left ideal, we have sr € J C m. But then
1 =1-sr+ sr € m, contradicting the maximality of m. Hence, 1 — sr has a
left inverse for any s € R.

Conversely, let » ¢ J. Then there exists a maximal left ideal m of R
such that r ¢ m. Since m + Rz is a left ideal containing m, it follows that
R =m+ Rx, and there are m € m and s € R such that 1 = m — sr. Then
1 — sr = m € m cannot have a left inverse. O

The following proposition is known as Nakayama’s Lemma.

Proposition 4.14. Let M € gMod be finitely generated. If J(R) - M = M,
then M = 0.

Proof. Let JM = M where J = J(R), and X be a minimal set of non-zero
generators for M. Assume that X # &, so that X = {my,...,m,}. There
exists r; € J such that mi = 377, rym;, so (1 — r)"tmy = D =g Ty
By Lemma 4.13, 1 — 1 has a left inverse, so m1 = } 7 5(1 — 1) trimy,
contradicting the minimality of X. Hence, X = &, and M = 0. U

Corollary 4.15. Let R be a local ring and M € gMod be finitely generated.
If the images of x1,...,xn, € M in M/mM form a basis over the skew-field
R/m, then x1,...,x, is a minimal set of generators for M.

Conversely, any minimal set of generators for M arises in this way. For
any such minimal set x = (x1,...,2,), and any y = (Y1,.--,Yn), ¥i € M,
there ezists a square matriz A = (a;;) € R™*"™ such that y = Az, and y is a
set of generators if and only if some (any) such matriz A € GL(n, R).

Proof. Since bases are minimal, the minimality is clear, once it has been
established that mq,...,m, generate M. Let N be the left submodule of
M generated by the m;. By assumption (N + mM)/mM = M/mM, so
N 4+ mM = M. This implies that mP = P for the module P = M /N. Since
m = J(R), Proposition 4.14 implies that P = 0, so that M = N.

The converse statement is trivial, since a minimal set of generators of a
vector space over a skew-field is automatically linearly independent.

Finally, let © = (x1,...,2,) be a minimal set of generators and let any
tuple y = (y1,...,yn) of elements of M be given. There are a;; € R such
that y; = >0, a;jz;, so we may define A = (a;;). By the above, the row
rank of A (mod m) is maximal if and only if y is a set of generators, so the
row determinant of A (mod m) is non-zero exactly in that case. It follows
that A is invertible if and only if y is a set of generators. O

In order to apply Nakayama’s Lemma in the context of supermanifolds, we
need to prove that m, is finitely generated. This is the content of the following
proposition, whose classical counterpart is called Hadamard’s Lemma.

Proposition 4.16. Let X be a supermanifold, x € Xg. Then my is finitely
generated; indeed, if (y,n) is a system of local coordinates, then m, is gener-
ated by the germs of y; — yi(x) and n;. In particular, dim; X = dimm,/m2.
Proof. Using the local coordinates, so we may assume that X is an open
subspace of RPI? containing 0, that z = 0, and that (yi,m;) = (x4,&;) are

the standard coordinates. In the decomposition mPl4 = m? @ Ng ‘q, Ng 17 g
generated by &, so it is sufficient to see that m? is generated by x;.
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But if f is a locally defined C* function vanishing at 0, then
1 n 1
f(z) = / fltz)zdt =)z / 9, f(tz)dt
0 ~ 0
7j=1

for z in a convex neighbourhood of 0. Since z — fol 0;f(tz) dt are C*°, this
proves the assertion.

Clearly, y; — yi(x), n; form a minimal set of generators for m,. By
Nakayama’s Lemma 4.14, dimm,/m2 = p|q. (Here, observe that the parity
is preserved in the quotient.) O

Corollary 4.17. Let X be a supermanifold with coordinates (y,n), and
fe€T(Ox). For any k > 0, there exists a polynomial p € Rluq, ..., uptq| of
degree < k such that (f — p(y — y(x),n))s € mFtL,

xT

exists p such that (f — p(y,n)): € mETL. For k = 0, we may take p = f(x).
Assume that £ > 1. By Nakayama’s Lemma 4.14, the cosets of the
monomials

Proof. W.lo.g. y;(z) = 0 for all j. We prove for all k: If f, € mk, then there

ya/rl/B :y?l y}?pnlﬁl ngq

where a1 + -+ ap+ 01+ -+ 8, =k, oj €N, B; € {0,1}, form a basis

of m¥ /mk+1. Thus, there is a linear combination p(y, n) of such monomials,
such that (f — p(y, 7)), € mitL, O

4.3. Morphisms, linear supermanifolds and products. The following
basic fact justifies the definition of supermanifolds as ringed spaces: “Super-
functions”, i.e. global sections of the structure sheaf, are exactly the same
thing as morphisms X — R, In fact, we will want to have a more general
statement, independent of dimension and the choice of particular coordinates.
For this purpose, the following concept proves useful.

Definition 4.18. Let V = Vi & V; be a super-vector space. We associate
with V' the supermanifold given by (Vo, Cif @ A(V1)*). We call this the linear
supermanifold associated with V', and denote it by the same letter. Observe
that V* C T'(Oy).

Given super vector spaces V and W, we define a super vector space V@ W
by taking the grading (V ® W); = @, = (mod 2) Vi @ We. Similarly, we
define a super-vector space Hom(V, W) by taking the grading Hom(V, W); =
Drre=i (moa 2 Hom(Vi, W). The even part of Hom(V, W) is also denoted
by Hom(V, W).

Lemma 4.19. Let V, W be f.d. super vector spaces, and A € Hom(V,W).
Then there is a unique morphism o = w4 : V. — W of the associated linear
supermanifolds such that p*(u) = po A for all w € V* and o*(f) = fo A
for all f € C>*(U), U C Wy open.

Thus, the correspondence which sends f.d. super vector spaces to their
associated linear supermanifolds is a functor.

Proof. Define @4 o(x) = Ax for all x € V. Let &,...,§, be a basis of W7.
Any f € Ow (U) may be decomposed uniquely as f = > P fﬁgﬁ where the sum
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isover f={f1 <--- < Bk} C{l,...,q}, f5 €C®(U), and ¥ = &5, --- &5,
Define ¢ (f) =>_5(fs0 A) - (€p, 0 A) -+~ (§p, 0 A).

It is clear that ¢4 : V — W is indeed a well-defined morphism. Moreover,
4 satisfies the condition stated in the assertion, and it is also trivial that
this determines ¢4 uniquely. (In particular, ¢4 does not depend on the
choice of a basis of W7'.) O

Remark 4.20. A simple consequence of Lemma 4.19 is the following: For
any linear supermanifold V/, there is an algebra morphism C*°(Vy) — I'(Oy),
corresponding to the canonical morphism V — V}.

In particular, any smooth or analytic fucntion on Vj , may be considered
in a canonical way as a superfunction on V. As we shall see, this carries over
to supermanifolds, however, in a non-canonical way.

Lemma 4.21. Let V' be a linear supermanifold of dimension plq. Any basis
of the underlying super vector space determines a system of local coordinates.
In particular, there exist systems of local coordinates contained in V*.

Proof. This is left to the reader. O

Theorem 4.22. Let X be a supermanifold and V a linear supermanifold.
There is a bijection

V(X) — Hom(V*,T'(Ox)) = (T(Ox) ® V)o
which is natural in X. Under this map,
Hom(V*, T(Ox)) and Hom(V{",T'(Ox)1)
correspond to the X -points of Vo and Vi, respectively.

Remark 4.23. In particular, an element of I'(Ox) represents the same data
as a morphism X — R, The naturality of this identification amounts
to the following: If f € I'(Ox) and ¢ : ¥ — X is a morphism, then the
morphism Y — R corresponding to ©*(f) is f oy, where f is considered
as a morphism X — R,

Proof of Theorem 4.22. Define

¢ : V(X) = Hom(V*,T'(Ox)) : ¢ = ¢(p) , ¢()(1) = ¢" (1) -
By Proposition 4.10,

P(p)(1)(x) = " (1) (x) = plpo(x)) forall z e Xo, peVy .

This already determines g. It is also readily seen by this definition that
¢ = ¢x is natural in X. The statements about the X-points of V{; and V;
are special cases of naturality.

The map ¢ is injective. Indeed, let ¢(p1) = p(p2), so i (p) = @i(w) for
all p € V*. The morphisms ¢, ¢2 have the same underlying map ¢o.

Let f € Oy(U) and z € ¢y (U). We may choose local coordinates (y,n)
in V*, by Lemma 4.21. By Corollary 4.17, there exists a polynomial ¢ in
(y,m) such that (f — 1)) € mg(lx) where p|g = dim, X. Since ¢ and @3
coincide on ¢ by assumption, and by Proposition 4.10,

(@5(f) = 03 = @i (f — Ve — D3(f — D)o € mETL .



GEOMETRIE UND ANALYSIS VON SUPERMANNIGFALTIGKEITEN 25

Since j5(5(f) — ©5(f)) = 45(f) o wo — j§(f) o po = 0, and because x was
arbitrary, Proposition 4.11 shows that ¢7(f) = ©5(f).

To see that ¢ is surjective, let us first assume that X is a supermanifold.
We will define an inverse map ¢ : Hom(V* T'(Ox)) — V(X). To that
end, fix f € Hom(V*,I'(Ox))o. We wish to define ¢ = ¢(f). First, define
o : Xg = Vp by the equation

plpo()) = f(u)(x) = jo (f(n))(x) forall peVg .

Since j§(f(w)) is smooth for any pu, so is ¢o.

Next, we define ¢* : Oy — ¢ Ox. Referring to the coordinates (y,7),
it will be sufficient to define ¢* on C*>°(U), where U C Vj is open, since
nj, generate Oy (U) as a C*(U)-algebra. Thus, let h € C®(U). Define

gj = f(y;) —yjopo € Ox(SOSI(U)) and

1
o)=Y — (W opo) e where &= el
aeNm

() — oo1trom
and h DT Dy

This makes sense because ¢ is nilpotent, and because X is a superdomain.
To see that ¢* is an algebra morphism, observe that ¢*(1) = 1, and
compute

* 1 « * *
o(mha) =30 3 e (7 0 e0) - (17 0 g0) -7 = " () - " (Ba)
v oatB=y

h are derivatives with respect to the coordinates y;.

Given f € Hom(V*,I'(Ox))a, let f(p) = ¢(4(f)) (1) = »(f)*(n). Since
yj(.a) = 0a0Yj +0a,e;, we have f(y;) = f(y;). This implies f = f, so po¢p = id,
and in particular, ¢ is surjective in the case of a superdomain.

Back in the general case, write ¢ = ¢x and choose some covering of X
by open subspaces X; = X |y, which are isomorphic to superdomains. Let
f € Hom(V*,T'(Ox)). Define f; € Hom(V*,I'(Ox,)) by fi(n) = f(w)|v,-
There exist ¢; € V(X;) such that ¢x,(;) = fi. By Proposition 4.4, there
exists ¢ € V(X) such that |y, = f o ju, = ¢i. Then

()W, = ju, " (1) = @i (1) = dx, (i) () = fi(p) = f(w)lu;
for all p € V*, and all i. By the sheaf axioms, this proves equality, and thus
that ¢ is surjective. O

Corollary 4.24. Let V and W be linear supermanifolds. Then the linear
supermanifold corresponding to the super-vector space V. x W 1is the product
of V.and W in the category SMan.

Proof. Let U =V x W as super vector spaces. For any X,
U(X) = Hom(U*,T'(Ox))
= Hom(V*,T'(Ox)) x Hom(W*,T'(Ox)) 2 V(X) x W(X) .

By the naturality in Theorem 4.22, this bijection is natural. Therefore, by
Corollary 2.25, we conclude that U = V x W as supermanifolds. O

In fact, the previous to results carry over to superdomains. This follows
from the following simple observation.
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Lemma 4.25. Let X,Y be supermanifolds, U an open subspace of Y, and
f: X =Y amorphism. Then f factors through the inclusion U — Y if and
only if fo takes its values in Uy.

Proof. This is a trivial consequence of the definition of morphisms. O

Corollary 4.26. Let X be a supermanifold and U an open subspace of RPle,
There is a natural bijection

U(X) — {(y,n) € T(Ox)} x T(Ox)? | Vz € X : y(z) € Up} .

Corollary 4.27. Let U; be an open subspace of RPila 7 =1,2. The open
subspace 0pr1+p2|q1+q2 corresponding to the open subset Uy g x Uy C RP1HP2
is the product of Uy and Us in the category SMan.

Corollary 4.28. Finite direct products exist in SMan.

Proof. A terminal object is given by (%, R) where * is any singleton set and
R is the constant sheaf on *. (An algebra morphism R — I'(Ox) is fixed by
its value on 1, so there is only one.) This covers the case of empty products.

Binary, and thus, arbitrary finite products, exist in view of Corollary 4.27
and Proposition 4.4. O

Example 4.29. Let (z,£1,&) be the standard coordinate system of RI2,
There is an automorphism of R'?, given by (z,£1,&) — (z + &1&2,61,6).
This example shows that morphisms need not respect the Z-grading on Opp,.

The existence of finite products allows for the following definition.
Definition 4.30. A Lie supergroup is a group object in SMan.

Exercise 4.31. One defines the complexification functor [—]¢ from real
super-ringed spaces to complex super-ringed spaces as follows: On objects,

(X,]:)(C = (Xa]:®R (C)v on morphisms (f7 f*)(c = (fa f* SR ld(C)

(1). Show that [—]c induces a fully faithful functor from real manifolds.
(2). Show that this functor, when considered on real smooth supermani-
folds, is neither full nor faithful.

Exercise 4.32. Show that the definition of manifolds in terms of ringed
spaces is equivalent to the definition in terms of atlases, in fact, that these
are isomorphic categories. Formulate a definition (equivalent to the ringed
space definition) of supermanifolds and their morphisms in terms of atlases.

Exercise 4.33. A superpoint is a supermanifold whose underlying manifold
is a point. Given supermanifolds X and Y, show that morphisms f: X — Y
are uniquely determined by f(A) : X(\) — Y(\), where A runs though all
superpoints.

Exercise 4.34. Show that there are inequivalent Lie supergroup structures
on R, Find all non-isomorphic Lie supergroup structures on R,
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4.4. Weil superalgebras and inner homs.

4.35. Let R be a commutative ring and let Spec R (the spectrum of R) denote
the set of prime ideals of R where a proper ideal p C R is prime if ab € p
implies that a € p or b € p, for all a,b € R. For any f € R, define the
fundamental open set Uy as

Uf:{pESpecR‘fgép}.
These sets generate a topology on Spec R, called the Zariski topology.
Let A be a supercommutative R-superalgebra. With the Zariski topology,
Spec Ay will be the underlying topological space of Spec A; its structure sheaf
of Spec A is defined by localisation. Let us recall this construction.

Construction 4.36. Let R be a commutative ring and S C R. The set S is
called multiplicative if 1 € S and S-S5 C S. Let S be multiplicative.
Let M be an R-module. Define an equivalence relation ~ on S x M by

(s,m)~ (t,n) &= JIreS:r(tn—sm)=0.
Let S™'M the quotient of S x M by this equivalence relation; it is called

the localisation of M at S. The element of S™1M represented by (s,m) is
denoted s~'m. Then S~1M is an R-module via

ro(s7tm)=s"1(rm) , sT'm+t"tn = (st) " (tm + sn) .

The R-module S™'M comes with the canonical R-module morphism
M — S7'M : m ~ 17 'm. These data enjoy the following universal property:
Given any R-module morphism ¢ : M — N such that any s € S acts on
N by an automorphism, there is a unique factorisation of ¢ through an
R-module morphism S~'M — N.

If M = R, then S™'R = S~ M has, in addition, a ring structure, given by

s7im - t7in = (st) "L (mn) ;
this is the localised ring of R at S. It is straightforward to see that S™'M is
an S~!'R-module, for any R-module M.

If S = R\ p for a prime ideal p, one denotes M, = S™'M, R, = S7'R;
similarly, when S = {fk ‘ k=0,1,.. } where f € R, one writes My = S—M,
Ry = STIR.

Proposition 4.37. Let A be a supercommutative R-superalgebra. For f € Ag,
let Ay be the localisation of the Ag-module A at f. The correspondence
Up — Ay extends uniquely (up to unique isomorphism) to a sheaf on the
space Spec Ag.

In the proof, we will need the following lemma.

Lemma 4.38. Let R be a commutative ring. The topological space Spec R
s quasi-compact, that is, any open cover has a finite subcover.

Proof. 1t is sufficient to prove this for a cover by fundamental open sets.
Thus, let Spec R = Uj Uy, where f; € R. Let I be the ideal generated by
the f;; if I # R, then I would be contained in a maximal ideal m. This
cannot be the case, since maximal ideals are prime, and I is not contained
in a prime ideal, in view of our assumption. Thus, R=17 and 1 =) i1 1
for some r; € R, all but finitely many of which are = 0.
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Let F' be the set of all f;, r; # 0. If p is a prime ideal, then F' Z p since
otherwise 1 € p. Thus, Spec R = | feF Uy and we have obtained the required
finite subcover. O

Proof of Proposition 4.37. In view of Proposition 3.18, it is sufficient to
show that this correspondence defines sheaves on the fundamental open
subsets of each U;. Moreover, since Ag is central in A it is clear that
same the definition as for the multiplication on (Ag); endows Ay with a
supercommutative superalgebra structure.

Let f € Ag. Observe that Spec(Ag)s = Uy. Indeed, any prime ideal in
(Ap)s corresponds under the canonical map to a prime ideal p C Ap; for
it to be proper in (Ag)y, one need to have f ¢ p, since f is invertible in
(Ag)s. The converse is also true. Moreover, the fundamental open subset
of Spec(Ay)s corresponding to g is Uy, since fg ¢ p is equivalent to g ¢ p,
in view of the primality of p. Since Uy, = Uy N Uy, the identification of
Spec(Ag) ¢ and Uy is a homeomorphism.

A similar argument shows (Af), = Ay,; this defines the restriction mor-
phisms of the sought-for sheaf. Moreover, replacing A by Ay and Uy by
Spec A, it will be sufficient to prove that on the basis of open subsets Uy,
Uy — Ay defines a sheaf. By Lemma 4.38, it will suffice to check the sheaf
axioms for finite open covers.

Thus, let g € Spec Ag = U?Zl Uy, such that g]Ufj = 0 for all j. Thus, for
all j, there is m; such that f]mjg = 0. Let m = my---my, then f"g =0
for all j. Let I = (f1,...,fn) C Ao and I, = (f{",..., f") C Ap; then
™™ cC I,. But I = Ay by assumption, so I, = Ay. Since r - g = 0 for all
r € I, and we may take r = 1, it follows that g = 0.

Next, let g; € Uy, be given such that gi|Uf2. 5= gj|Uf¢ e There is some
N > 0 such that

(Fif))Ngi = (fif))Ng; forall i,
Possibly enlarging N, we may assume fJN g; € A, and, as above, that
1=>7", rijN for some r; € Ag. Thus, set g =37, rjijgj. Then
N n
g=> ri(fif)Ng; => ity g = fNoi ,
j=1 j=1
so glu,; = gi, as required. O
Definition 4.39. Let Spec A = (Spec Ay, O4) where O 4 is the sheaf defined

in Proposition 4.37, considered as an object of the category SRSpg. This
super-ringed space is called the spectrum of A.

We will apply this construction in a very particular case.

Definition 4.40. A Weil superalgebra is a finite-dimensional R-superalgebra
A with a graded nilpotent ideal J4 such that A =R & Jy4.

Any Weil superalgebra is a local ring, and J4 is the maximal ideal; it
consists exactly of the nilpotent elements of A.

Exercise 4.41. Let A be a R-superalgebra. Then A is a Weil superalgebra
if and only if A & R[zy,...,xk,&1,...,&]/I for some graded ideal I such
that I D (z1,...,2,&1,...,&)", for some N > 0.
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Lemma 4.42. Let A be a Weil superalgebra. Then Spec Ag is a point.

Proof. We may and will assume A = Ay. Then A = Rz1, ..., x|/ for some
graded ideal I D (z1,...,7;)". Any prime ideal p C A has the form q/I

where q C R[z1, ...,z is a prime ideal containing I. Then xév € q for all j.
Being a prime ideal, q is radical, so z; € q. Then q = (x1,...,2}), and this
determines p = J4. O

Remark 4.43. In fact, as follows from its proof, the conclusion of Propo-
sition 4.10 holds for any super-ringed spaces X,Y such that the stalks
O = Ox, of the structure sheaves satisfy the following assumption: O s
local, O = R @ m, and O\ m consists of invertible elements. For any such
super-ringed space X, values of local sections of the structure sheaves can be
defined as for supermanifolds. One obtains a subsheaf Ox, of the sheaf of all
R-valued functions on the topological space Xy and a canonical morphism
Jjo : Xo = X where we let Xo = (Xo,Ox,) (by abuse of notation).

If, in addition, there exists some q > 0 such that any open subpace of X
satisfies the conclusion of Proposition 4.11, then by the proof of Theorem 4.22,
for any linear supermanifold V', the canonical map V(X) — Hom(V*,T'(Ox))
is injective. If, moreover, X is covered by open subspaces U such that Oy is
an Oy, -algebra, then this map is also surjective.

We shall call X locally determined, if these three properties are fulfilled.

Lemma 4.44. Let X = (Xo,Ox) be a super-ringed space and A a Weil
superalgebra. The product X x Spec A exists in SRSpr, and there exists
a canonical right inverse j4 : X — X x Spec A to p; : X x Spec A — X,
defining a natural transformation id — (=) x Spec A. If B is another
Weil superalgebra, then Spec(A ® B) = Spec A x Spec B. If X is a locally
determined super-ringed space, then so is X x Spec A.

Proof. Let Z = (Xo,0z) where Oz = Ox ® A, the tensor product of R-
superalgebras. For any sheaf F of supercommutative superalgebras on X,
we have the isomorphism

Hom(Ox, F) x Hom(A, F) 2 Hom(Ox ® A, F)

given by (1, p2) = 01 ® @2, (1 ® 92)(f ® a) = p1(f) - p2(a). Here, Hom
denotes morphisms of superalgebra sheaves. This proves that Z = X x Spec A.
The right inverse j4 is defined by ja 0 = idx and by setting j4(f ®1) = f,
Ja(f®a) =0 for all @ € J4. It is easy to check that this is natural.
The construction immediately shows that Spec(A ® B) = Spec A x Spec B.
Let X be locally determined. It is straightforward that maximal ideal of
OX,:): ® A is my ., ® AD®R® Jya, so indeed OXXSpeCA,x =R® MX xSpec A,z-
The elements of R® .J4 are nilpotent, so that f ¢ mx xSpec 4, are certainly
invertible. Moreover, J 1]4\7 = 0 for some N > 0, so that

m?ié\;ec Az — (mX,ﬂU ® A)m(mXXSpE'C A,m)N - m%,x ® A

It follows easily that X x Spec A is locally determined, since Spec Ay is a
point, and Ogpec 4, = R. This proves the lemma. O

Definition 4.45. Let C be a category and X,Y € ObC. Assume that S x X
exists in C for any S € ObC. An object Z is called inner hom from X to Y
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and denoted by Hom(X,Y) if there is a natural isomorphism
Hom(X, Z) = Hom(S,Hom(X,Y)) = Hom(S x X,Y) ,

in other words, if Z represents the functor S — Hom(S x X,Y). If it exists,
Hom(X,Y) is unique up to canonical isomorphism.

We will use this concept in a slightly more general context: To define when
an inner hom exists in supermanifolds, we will only require the products
S x X to exist in the category of super-ringed spaces.

Remark 4.46. This definition mimics the customary identification of maps of
sets f: S x X =Y and g: S — Maps(X,Y), given by f(s,z) = g(s)(x).

The inner homs Hom(Spec A, X') will have the structure of a fibre bundle,
so we introduce the relevant terminology.

Definition 4.47. Let p: X — S be a morphism of supermanifolds.

If F'is another supermanifold and U an open subspace of S, then a local
trivialisation of p over U with fibre F is an open embedding 7: U X F — M
such that p o7 = jy o py, i.e., the following diagram commutes:

X< -UxF
pl \Lpl
e U

Ju

where p; is the first projection. The open subspace X | P (Uo) of X lying over

U is denoted by X|y; thus, 7 induces an isomorphism U x F' — X]|y.
The set of local trivialisations of p over U is denoted by 7,(U) or 7x(U);

similarly, the set of local trivialisations with fibre F' is denoted by T}f (U)

or 7E(U). Then 7x and 7£ are sheaves of sets. (Here, we identify open

subspaces of S with open subsets of Sp.)

A subsheaf A of 7x resp. T)}; such that there exists an open cover U/ of S
such that A(U) # @ for all U € U is called an atlas of local trivialisations
resp. of local trivialisations with fibre F'. Then p or, by a slur of language,
X, is called

(1). an S-family (of supermanifolds) or a (relative) supermanifold over S,
if p possesses an atlas of local trivialisations, and

(2). a fibre bundle with fibre F, total space X, and base space S, if p
possesses an atlas of local trivialisations with fibre F'.

Usually, the morphism p = px will be understood in the notation, and one
writes X/S for X. We will adopt the same language for arbitrary morphisms
X — S of super-ringed spaces, and call these (relative) super-ringed spaces
over S. A relative morphism X/S — Y /S (of super-ringed spaces over S) is
a morphism f : X — Y such that py o f = px. More generally, if X/S, Y/T,
then given ¢ : S — T, we say that ¥ : X — Y is over ¢ if p o px = py o 9.

One obtains a category of super-ringed spaces over S; the categories of
supermanifolds over S, and of fibre bundles with fibre F and base S are
defined as full subcategories.

As usual, there is a patching lemma.
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Proposition 4.48. Let S be a supermanifold, (U;) an open cover, and F;
supermanifolds. Consider the trivial families X; = U; X F; over U;. Assume
there are isomorphisms v;j : Xjlu,, — Xi\Uij over Us;, such that

Pij © Pik = Pik
where the latter equation is understood over Uyjy.

Then there exist a supermanifold X/S with and relative isomorphisms
i+ Xi = Xy, over U; such that p;0p;; = @; over Uy;; if F; = F, then X is
a fibre bundle with fibre F'. These data are unique up to unique isomorphism,
in fact, for any super-ringed space Y/S and any ; : X; — Y|y, over U,
such that ;o p;; = ; over Usj, there is a unique morphism ¢ : X/S —Y/S
such that ¥ o @; = ; over U;.

Proof. The assertion will follow from Proposition 4.4 as soon as it is clear
that the spaces X;g glue to a paracompact Hausdorff space. Therefore, we
drop all the subscripts o and work in the category of topological spaces.
Let X be the space obtained by gluing the X;, and p : X — § the
projection. Since S is paracompact, we may assume that (U;) is locally finite,
so X has a locally finite open cover by paracompact Hausdorff spaces.
Hence, X is paracompact, and to see that it is Hausdorff, it is sufficient
to separate z,y € X with p(z) # p(y) by disjoint open neighbourhoods. But
this is trivial, since .S is Hausdorff. U

Let us return to the inner homs. We first treat the linear case.

Lemma 4.49. Let A be a Weil superalgebra A and V = RP1 as a linear
supermanifold. Let AQV be the linear supermanifold whose underlying super-
vector space is the tensor product A® V. Then A®V = Hom(Spec A, V).

Proof. Applying Theorem 4.22, we compute, for any supermanifold S,
Hom(S, A® V) =Hom((A® V)", I'(Og)) = (I'(Os) @ A® V)
= Hom(V*,T(Og) ® A) = Hom(V"*,I'(OsxSpec 4))
= Hom(S x Spec 4, V) .

In the last step, observe that Theorem 4.22 applies, in view of Lemma 4.44
and Remark 4.43. U

Next, we pass to superdomains.

Lemma 4.50. Let A be a Weil superalgebra, V = RPl9 as a linear superman-
ifold, and U an open subspace of V. Then U x J4 ® V' = Hom(Spec A, U).

Proof. This follows by applying Lemma 4.25. (]

Construction 4.51. Let A be a Weil superalgebra and ¢ : X — Y a
morphism of supermanifolds such that Hom(Spec A, X) and Hom(Spec A,Y")
exist. We define ¢4 : Hom(Spec A, X) — Hom(Spec A,Y") to be the mor-
phism given on S-points by:
QOA(S) = 90(3) €5xSpec A Y.

Here, observe that Hom(Spec A, X)(S) = X (S x Spec A). This construction
is obviously functorial, i.e. if ¢ : Y — Z satisfies the assumptions of ¢, then
(Yop)a=1acepa.
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Recall the canonical morphisms S A8 % Spec Ao g. Composition
with these defines canonical maps

Hom(Spec A, X)(S) — X(S) and X(S)— Hom(Spec A4, X)
which are natural in .S and therefore define morphisms
pa : Hom(Spec A, X) — X and sy : X — Hom(Spec A, X)

which satisfy ps o s4 =id.
The following diagram commutes:

X %5 Hom(Spec A4, X) 2~

X

d I
Y —- Hom(Spec A,Y) 22~y

Indeed, we compute for s €g Hom(Spec A, X) = X (S x Spec A),

palea(s)) = ¢(s)oja=(soja) =p(pals)) ,
and similarly for s4. In particular, ¢, is relative morphism over (.

Proposition 4.52. For any Weil superalgebra A and any supermanifold X,
the inner hom Hom(Spec A, X) exists in SMang . It has the structure of a

fibre bundle over X, with typical fibre J4 @ RPIZ, where plg = dim X. Thus,
if dim A = r|s, then dim Hom(Spec A, X) = pr + gs|ps + qr.

Proof of Proposition 4.52. Let (U;) be an open cover of X by open sub-
spaces isomorphic to superdomains. Then Hom(Spec A, U;) exists and equals
U; x J4 ® RPIY by Lemma 4.50. Applying Construction 4.51, we obtain
isomorphisms Hom(Spec A, Uj)|v,; — Hom(Spec A, U;)|y,; over U;;. Then
Proposition 4.48 implies our claim. O

Definition 4.53. Let A be a Weil superalgebra. For any supermanifold,
the fibre bundle p4 : Hom(Spec A, X) — X is called the A-Weil bundle of
X and denoted T4 X.

The functor T4 which maps X — T4 X and morphisms ¢ : X — Y to
morphisms Tap = @4 : TaX — TAY over ¢ is called the A-Weil functor.

4.54. Let V be a linear supermanifold. For the underlying super-vector
space, the structure maps of addition V x V' — V and multiplication by
scalars R x V' — V give even linear maps V@V —- V and RV — V.
The transpose of these maps defines elements of Hom(V*, (V ® V)*) and
Hom(V*, (R ® V)*), respectively. Since (W @ V)* = W* @ V* C I'(Owxv)
for W =R or W =V, we obtain morphisms VxV -V and RxV — V.

In particular, for any super-ringed space S, V(S) has the structure of a
R(S)-module. Let U be an open subspace of V. For v €5 V, we say that
v €g U if v = jy(v') for some v' €g U. Since (being a monomorphism) jy is
injective on S-points, v’ is then unique, and this makes sense.

Lemma 4.55. Let U be an open subspace of V. There exists a largest open
neighbourhood UM of U x 0 x V in U x R x V such that for any super-ringed
space S,

u+eveg U forall (u,e,v) Eg vl
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Proof. For any morphism ¢ : X — Y and any open subspace V C Y,
let o~ 1(V) C X denote the open subspace correpsonding to the open set
©o (Vo). Then ¢ induces a morphism ¢ : ¢~ (V) — V (¢f. Lemma 4.25).
In our present situation, consider the morphism ¢ defined on points by
V(S) xR(S) x V(§) = V(S) : (u,€,v) — u+ev. The UM = o=1(U). Since
© maps (u,0,v) to u, this is an open neighbourhood U x 0 x V, and it
obviously contains any other open neighbourhood satisfying the assumption
of the lemma. (]

The following may be viewed as a generalised form of Hadamard’s lemma.

Lemma 4.56. Let X be a supermanifold, V a linear supermanifold, and U
an open neighbourhood of 0 in R. For any morphism f: X x U — V such
that f(x,0) =0 for all x €g X, there is a unique morphism g: X xU =V
such that

f(z,e) =eg(z,e) forall (x,e) € X x U .

Proof. First, we prove the uniqueness. It is convenient to use the topology
on X (95) consisting of all W (.S) where W is an open subspace of X. For
any morphism ¢ : X — Y, ¢g : X(S) — Y(S) is continuous. Indeed,
' (V(S)) = ¢~ HV)(S). We remark that the topology on X (S) x U(S)
thus introduced coincides with the product topology of X (S) and U(S).

Let g, ¢’ satisfy the assumption in the assertion. If £ €5 (U \ 0), then ¢
is an invertible element of R(S). Thus, g(z,¢) = ¢'(z,¢) for all x € X and
e €5 (U\0). But (U\0)(S5) is dense in U(S), so X(S) x (U \ 0)(5) is dense
in X(S) x U(S), and by continuity, g and ¢’ coincide on X (S) x U(S). Since
S was arbitrary, g = ¢'.

For the existence, in view of Theorem 4.22, by composing with linear
forms on V, we may assume V = R, So, in fact, we are considering
a superfunction f. Moreover, by the uniqueness, we may assume that
X C RPl is a superdomain. Thus, X x U is an open subspace of RP114, and
=, fr&! for some f; € C¥(Xy x Up) where fr(x,0) = 0 for all z € Xo.

Thus, one may set g = ; gr&! where gp(z,e) = fol Os f1(x, 8)|s=ct dt. O
Definition 4.57. Let U be an open subspace of a linear supermanifold V,
and W be another linear supermanifold. Let f : U — W be a morphism and

UM a neighbourhood as in Lemma 4.55.
By Lemma 4.56, there exists a unique morphism ! : UM — W such that

flu+ev) — fu) = efM(u,e,v) forall (u,e,v)eg U

and all super-ringed spaces S. (This follows by covering U 1) by open subpaces
of the form U, x V,, x W, where (U,) is an open cover of U, and V,,, W,
are open neighbourhoods of 0 in R and V, respectively.)

We let df : U x V — W be the morphism defined by

df (w)v = df (u)(v) = fH(u,0,v) forall uesU,vesV .
Inductively, define d”f : U x V"™ — W by
A" f () (o1, ong1) = d(d” () (01 00)) (1, On 1)

forall u eg U, v1,...,0p41 €s V.
The morphism d"f is called the n'* derivative of f.



34 A. ALLDRIDGE

Proposition 4.58. Let V., W be linear supermanifolds, U C V an open
subspace, and f : U — W a morphism. The n' derivative d™f is symmetric
n-linear, that is,

d"fu)(..., w+vj,... ) =Ad"fu)(...,v,...) +d" f(u)(...,v5,...),
d"f(u)(... vy v5,. ) =d" fu)(.. . v, .05, )
forallu es U, v,v;,v; €5V, A €5 R, and any super-ringed space S.

Proof. 1t is sufficient to prove the linearity for the first derivative df. To that
end, note

flu+e(M+w)) = flut+eA+w)) — flutew) + flu+ew)
=AU (u+ew, el v) + efM(u, e, w) + f(u) ,
SO
MU (w4 ew,exv) + fU(u,e,w) = fU(u,e, o +w) ,

from which the assertion follows by setting € = 0.
We prove the symmetry in the case of the second derivative. The general
case then follows by a trivial induction. There is a unique g such that

eg(u,d,v1,e,v3) = f[l](u+5v2,5, vy) — fm(u, 0,v1) ;

in particular, d?f(u)(v1,v2) = g(u,0,v1,0,vs).
We compute

5(f[1](u+€v2,(5,111) — f[l](u,é,vl))
= f(u+ vy +ev2)) — f(u+eve) — f(u+dvy) + f(u)

so that
ebg(u, 8, v1,€,v2) = ed(f[l] (u+ eva, 8,v1) — FM(u, 0, 1))
= 0 (fU(u + dv1,e,v9) — f(u, e, v2))
=edg(u,e,v9,8,v1) ,
and in particular, d?f(u)(v1, ve) = d? f(u)(va, v1). O

Proposition 4.59. Let Vi, Vo, W be linear supermanifolds, U; C V; open
subspaces, and f: Uy — Us, g: Uy — W morphisms. Then

d(go f)(u)v =dg(f(w))df (u)v forall wegU;,ves Vi .
Proof. We compute

9(f(utev) = g(f(u) +efM(u,e,0)) = eg(f(u), &, (w6, 0)) +9(F(w))
so (go /)M (u,e,v) = g (f(u),e, fH(u,e,v)), which proves the claim. [

Definition 4.60. Let V', W be linear supermanifolds, U C V an open
subspace and f : U — W a morphism. Define, for n € N, the n** Taylor
polynomial P*"f : U xV — W of f by
"1
P" f(u,v) = Zf'd”f(u)(v,...,v) forall uesU,vegV .
=07
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Proposition 4.61. Let V., W be linear supermanifolds, U C V an open
subspace and f : U — W a morphism. There exists a unique morphism
ot gl 5 Wosuch that

flu+ev) — PP f(u,ev) = "Lt e 0)  for all (u,e,v) e UM .
Proof. First, we prove, by induction on n, that there exist morphisms some

b :UxV — W, firtll Ul — W, such that
(4.2)

flu+ev) = Zejbj(u,v) + eIty e v) for all (u,e,v) €g UM
=0

The claim is clear for n = 0. So, let n > 1 and assume that the claim has
been proved for n — 1. Define b, by b, (u,v) = fI™(u,0,v). Then

flu+ev)— iejbj(u,v) = 5"(f[”](u,6,v) — f["](u,(),v)) .
j=0

This proves our first assertion, in view of Lemma 4.56. O

To complete the proof, consider the operator L,, defined for any morphism
g : V. — W inductively by
ng(ﬂf, U) = g(.%' + U) - g(ZL‘) ) Lpg(ZL‘,U) = Lp—lg(aj + ’U,’U) - Lp—lg(xav) :

Then
P

. (n .
Lygte.) = 217 (ot + (0= e
j=0
as is easily proved by induction.
The operators L, have following property.

Lemma 4.62. We have L, f(u+ €)(0,v) = Ly f(u,ev) = €"g(u,e,v) for
some unique morphism g such that g(u,0,v) = d" f(u)(v,...,v).
Proof. First, we notice that L, f(u + €)(0,v) = Ly f(u,ev) by definition.
Next, we introduce operators L,, inductively by L; = L; and

f/nﬂh(u,vl, ceyUp) = Enh(u + Upy U1y ee, Up1) — [th(u,vl, ceeyUp) .
In particular, Lyh(u,v) = Lpoh(u, v, ..., v).

We prove by induction:

L f(u, €101, ... entn) = €1 EnGn(Us €1, V15 - - -, Ens Un)
for some morphism g,, such that
gn(u,0,v1,...,0,0,) = df"(u)(vi,...,vn) .

From this, the assertion will follow, since uniqueness is obvious.
The statement is obvious for n = 1. Let is be proven for n — 1. Then

Lof(u,e1v1,...) = Ly_1(u+ epvn,e1,01, ... ) — Lpn_1(u,e1,01,...)
=e1En1(gn-1(u+Entn,...) — gn-1(u,...))
=e1En-gn(u,e1,01,...,6n,0p)

for some g, such that

gn(u,e1,v1, ..., 6n—1,0,0p) = d[gn_1(~,51, vy, ... ,En_l,’l)n_l)] (u)(vy) -
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From this, the statement follows. O
We will also need the following combinatorial identity.
Lemma 4.63. Forn>1and m>=n >k > 0, we have
LA '
> (%) 17 0m = 5 = buunt
j=0

Proof. We prove the claim by induction on n. For n = 1, kK = 0, we have
m® — (m —1)° =0, and for k = 1, we have

ml—(m—l)lzl.
Assuming the claim forn > 1, m>2n >k, letem>n+1>k > 0. Then

)y (" T im

=\
Now,
(m— ) = (m—1— ) =kZ<) ~1-J)'
() = k: () : (j) (~1Y(m—1-j)
This proves the claim. 0

Proof of Proposition 4.61 (continued). Fix n and any representation of the
form (4.2). We now prove by induction on ¢ < n that

1 .
bj(u,v) = ﬁd]f(u)(v,...,v) forall j</.

The case of £ = 0 is easy deduced by setting ¢ = 0. So let £ > 0, and
assume the assertion has been proved for £ — 1. If ¢ is homogeneous of degree
k<Y, e glqr) = ¢°g(z) for all ¢ € N, then

l
Ligtmv.) =Y (6) (—1)(n+ m — ) g(v) = Gl - g(o)

=0 M
by Lemma 4.63. Hence, we have
Lof(u+e)(0,v) = e Leby(u, ) (0,0) + e g(u, e, v)
where

g(u,e,v) Z e b (u, ) (0,0) + "L Ly f T (e, ) (0, 0)
J=0+1
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From Lemma 4.62, we conclude that
Lébé(ua )(07 ’U) = def(u)(% B ’U) :

In particular,

be(u, -) is homogeneous of degree ¢, so that Lyby(u,v) = £!- by(u,v) by the
above. This proves the proposition. O

Proposition 4.64. Let Vi,...,V, and W be linear supermanifolds. Any
even n-linear map A : Vi x V,, = W of the underlying super vector spaces
gives rise to a unique morphism pa : Vi x V, = W such that ¢%(pn) =
poAe Vi -V CT'(Oyx..xv,)-

On S-points, ¢4 is given as follows: Given (v1,...,v,) €g H?:l Vj, we
have vj € (I'(Og)®@Vj)o, s0v; = Y, s;iQwy; for some sj; € I'(Og), wj; € Vj.
Then

(4.3) @a(vi,...,vn)= Z (—1)Zsehwmnllongl g5 gy Afwig,, . wng,)

Proof. The first statement is obvious, so we need to prove (4.3). We treat
the linear case, the general case then being an exercise in sign bookkeeping.

Thus, n =1, and V = V4. By the first part, we may assume W = R so
that we are dealing with superfunctions, and A € V* o4 = A. Let ¢ € T'(Oy)
be defined on points s = Y. s; ® w; €5 V by ¢(s) = >, s;A(w;). But this
is just s*(A) = pa(s), as one sees by running through the isomorphism
Hom(V*,T'(Og)) = (I'(Og) @ V). Hence, ¢ = v 4. O

Proposition 4.65. Let X be a supermanifold and Vi,...,Vy,, W be linear
supermanifolds. There is a natural bijection between the set of morphisms
p: X x Vi x---xV, =W such that

(4.4) o(z,vi,..., wj+w,...) = Xp(z,v1,...,05,...)+p(z,v1,...,w,...)

forallx €5 X, X €5 Ry, (v1,...,v,) €5 VI X --- x V,, w; €5 Vj, all
j=1,...,n, and the set

Hom (W*,T(Ox) ® ®)_, V}"),, = ([(Ox) @ Hom(Vi ® - - - @ Vi, W))o,a -

This set is also equal to Hom(X,Hom(V} ® - - - ® V,,, W)) where the super-
vector space Hom(V) ® -+ - ® Vi, W) is considered as a linear supermanifold.

Proof. In view of Theorem 4.22, Hom(W*,I'(Oxxv;x--v,,))a is the same
as the morphisms X x V; x ...V, — W, so what we need to prove is that
Equation (4.4) singles out the linear maps with values in I'(Ox )@V ®- - -QV,*.
That the elements of the latter set satisfy the equation is straightforward.

Conversely, again by Theorem 4.22, we may assume W = R so that
the statement is about superfunctions. Since the V; are finite-dimensional,
it is easy to see that the statement is local. Thus, we assume that X is a
superdomain in with coordinates (x,&). We consider the case of n = 1, the
general case being then an exercise in notation.

Thus V = Vi, and we consider on this space coordinates (y,7n). Let
¢ € I'(Oxxy) satisfy Equation (4.4). We may write ¢ = Y, frs&n’
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where fr; € C¥(Xo x Vo). Welet fr=>"; frs€" and consider this as a
I'(Ox)-valued function on Vp . The assumption on ¢ implies

fr) = MY (w) forall A£0,0e V.

Thus, f; = 0 unless |J| # 0,1. Moreover, fg is linear, so f; € I'(Ox) V™,
and fy is constant for |J| =1, so f; € I'(Ox) in this case. But then we have
o= fo+>, fini € '(Ox)® V*, as claimed. O

Corollary 4.66. In the situation of Proposition 4.65, assume given a mor-
phism ¢ : X X H?Zl Vi = W satisfying Equation (4.4).

If A is any finite-dimensional R, -superalgebra, then ¢ has a canonical
A-multilinear extension ida®@ ¢ : X x [[I_;(A®V;) > A W.

Theorem 4.67. Let U; C V;, j = 1,2, be open subspaces of linear super-
manifolds, A a Weil superalgebra, and ¢ : Uy — Us a morphism. Then

Tap : TAUL =U; X J4 @ V) - ThlUs =Uz X Jy @ Vo

is given on S-points by
Tap(u,v) = Z Ed o(u)(v,...,v) forall (u,v) €U x J4 @V
k=0 "

where the summands on the right hand side are defined by A-linear extension,
v. Corollary 4.66.

Example 4.68. Let D), = R[]/(**!) where the indeterminate ¢ is even.
Then in the setup of Theorem 4.67, TyU; = Uy x H§=1 eIV, and

k

Tap(u,v) = p(u) + & - dp(@)(v) + -+ = - dp(u)(v, ..., v)

is the formal Taylor polynomial of ¢, of order k. One is tempted to identify
this with P*¢, v. Definition 4.60.

The example motivates the following definition.

Definition 4.69. Let D = Dy, the ring of dual numbers. For any superman-
ifold X, let TX =TpX, and call this the tangent bundle of X. Furthermore,
let JEX = Tp, X, and call this the k-th jet bundle of X. For DF =D®-- @D,
let T*X = Tppx X. This is called the k-th tangent bundle of X.

If p: X — Y is a morphism of supermanifolds, T4 is called, for A =D,
Dy, and D*, respectively, the tangent morphism, the k-th jet morphism, and
the k-th tangent morphism of .

Example 4.70. Another basic example of a Weil superalgebra is given by
A = A(R)*. In this case, Spec A = R%* is a supermanifold. One has

TAU = U x R®IPs

In particular, for s = 1, we have TyU = U x R, so the bundle T4 X is
derived from T'X just by changing the parity of the linear fibre. It is called
the odd tangent bundle in the literature, and denoted by IITX.

For an ordinary manifold X (viz. ¢ = 0), the supermanifold II7TX has
the structure sheaf Q% ® R of R-valued differential forms on X. For this
reason, the superfunctions on II7T°X are a generalisation of differential forms
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to supermanifolds. They are called pseudodifferential forms. We will discuss
them at length below.

Proposition 4.71. Let A be a Weil superalgebra. The Weil functor Ta
enjoys the following properties:

(1). Ta commutes with finite products: in particular, ToG is a Lie super-
group for any Lie supergroup G;

(2). if U is an open subspace of X, then ToU is an open subspace of Ta X ;

(3). if B is another Weil superalgebra, then TagpX = Ta(TpX), where
the isomorphism is natural; in particular, TaooTp =T oT4.

Proof. (1). The statement about supergroups follows from the statement
about products. By definition, in the case of binary products, this may be
checked locally, where it is obvious. For the empty product, we have

Hom(S,T4(*)) = Hom(S x Spec A, %) = x ,

50 Ta(x) = *.
(2). This is clear by construction.
(3). We observe Spec(A ® B) = Spec A x Spec B, so

Hom(S, TagpX) = Hom(S x Spec A x Spec B, X)
= Hom(S x Spec A, TpX) = Hom(S,T4(TpX))
for any supermanifold S. O

Corollary 4.72. Any natural transformation Ty — Tp (with A, B Weil
superalgebras) is uniquely determined by its value at X = R.

Proof. Indeed, let o,7 : Ty — Tp be natural. We first show that they are
determined by their values on R, So, assume that ORill = TRi|1.

Since T4 and T commute with finite products, the naturality of ¢ and
T gives ox = 7x for X = RYO and X = RO, and then for X = RPl
where p and ¢ are arbitrary. By item (2) of Proposition 4.71, this equality
extends to the case of an open subspace X of RPI%, and thus, to an arbitrary
supermanifold, in view of Proposition 4.4.

This proves the claim under the assumption of ox = 7x for X = R/
Naturality and item (3) of Proposition 4.71 show that Tc7x = 77, x for any
Weil superalgebra C. However, for C' = /\R0|1, we have ToR!0 = R by
Lemma 4.49. Then 711 = ToTRijo, and this finally proves the assertion. [

A nice property of Weil functors is their behaviour under ‘base change’.

Construction 4.73. Let f : A — B is an (even and unital) algebra
morphism of Weil superalgebras. It induces a morphism of ringed spaces
Spec B — Spec A, given by (idy, f). Denote this morphism by f*.

Let X be a supermanifold. We define T x : T4y X — T X on S-points by

Trx(s) =so(idsg xf*) forall se (T4X)(S)=X(S x SpecA) .
Proposition 4.74. Let f : A — B and g : B — C be morphisms of Weil
superalgebras.

(1). The collection (Tyx), for all supermanifolds X, defines a natural
transformation Ty : Ty — T, and Ty =Ty o T}.
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(2). If f is surjective, then Tt x : TaX — TpX is a fibre bundle with fibre
Tier f X, for any supermanifold X of pure dimension. If f is injective, then
Ty x is locally isomorphic (id7, x, Scoker f © PA) : TaX — TaX X Teoker £ X -

(3). The map f — Ty is an isomorphism Hom(A, B) — Hom(T4,TR).
Here, we consider T, Tp as functors with values in supermanifolds, and do
not a priori assume that natural transformations consist of bundle morphisms.

Proof. (1). Let ¢ : X — Y be a morphism of supermanifolds. Then
(Try o Tap)(s) = Try (p(s)) = p(s) o (ids x f7)
= p(so (ids xf¥)) = Tpep(so (ids x 7)) = (Tpp o Tr,x)(s)

for all s € Ty X (S) = X(S x Spec A). Hence, Ty is a natural transformation.
Next, compute

(Tgx 0Ty x)(s) =Ty x(so(ids xf*)) = so (idg x f*) o (idg xg")
=so(idgx(go f)*) = Tyos,x(s)
for all s € (T4 X)(S) = X (S x Spec A).

(2). Both statements are local. Let X = U be an open subspace of
V=RPU Then Ty : U x Ja®@V — U x Jg®V is given by

Tyu(u, 30 @ vi) = (v, 32, f(ai)vi)
forallueg U, a; €g Ja, v; Eg V.

If f is surjective, let W be a graded vector space complement of ker f.
Under the isomorphisms B x ker f — W x ker f — V, the map f corresponds
topy: W xker f — B.

If f is injective, let W be a graded vector space complement of f(A). Under
the isomorphisms A x coker f — f(A) x W — B, the map f corresponds to
(id,0) : A — A x coker f.

(3). We observe that T4(R) = A as a linear supermanifold. The structure
maps +,- : R x R — R give rise to T4(+),Ta(-). By the computation in
(2), these are the same as the addition and multiplication of A. Hence, any
natural transformation T4 — T gives rise to an even linear map which
commutes with -. Naturality, applied to the embedding 4 : R — A, gives
the unitality. But in view of Corollary 4.72, this proves our claim. (]

4.5. The local structure of morphisms.

4.75. Derivatives can be given an expression in terms of coordinates; this
approach is common in the literature.

Let U be a superdomain in RPI9, with coordinates (z,€) given by a basis
of (RPl9)*, Assume given a morphism ¢ : U — V, where V is some linear
supermanifold. By Proposition 4.65, one may view dy as an element of

(T(Or) ® Hom(RP,V)) | = Homp o, (T'(Oy) @ RP4,T(Oy) @ V) .
Thus, if 7, & are the dual basis of RPI9, given by
zi(x}) = 6ij , &i(z;) =0, :i(&§5) =0, &(&) = dij
then we may define
( 0

axigp>:dgp(1®xf) and (8

8751-%0

W) =dp(1 &) .
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Since (I'(Opy)®@V)p = V(U), this determines morphisms a%iap, %(p U= V.
If V is endowed with the linear coordinate system (y, ), then the matrix

representation of dip in the corresponding bases has the entries 8%’}%’” ¢ (1)
J

9p* (1i)

ox;

I ij I
. This follows from the chain rule. In shorthand, one writes

8%*(1/) 89055(1/)
dp =\ op*(n) o (m) | -

ox o€

and

9™ (n:)
0¢;

This is called the Jacobian matriz of ¢ in the coordinates (z,&) and (y, 7).
For V = R, the partial derivatives of superfunctions on U are again
superfunctions. An easy computation using the chain rule shows that a%i
are even derivations, whereas (%_ are odd derivations.
In terms of the partial derivatives, we may express dy as

dwzzgo@%—z:(—l)'@w@fi :

T &
Moreover,
ox; 8&' ox; afi
721"77:07 :077:57‘
ox; V70 0¢; og

Definition 4.76. A morphism ¢ : X — Y is called a local isomorphism
if there exist open covers (U;), (V;) of X and Y, respectively, such that ¢
induces isomorphisms U; — V.

We have following version of the Inverse Function Theorem for superdo-
mains.

Proposition 4.77. Let ¢ : X — Y be a morphism of superdomains X C RPl9,
Y c R"ls. The following are equivalent:

(1). wo(Xo) is open and ¢ : X — ¢(X) is a local isomorphism,

(2). for any x € X, the germ of dp € T(Ox) ® Hom(RPI4, R"lS) at z is
inwvertible, and

(3). for any x € Xq, the value of do at x is invertible.

Proof. 1t is clear that (1) = (2), from Proposition 4.59. Trivially, (2) = (3).
Thus, assume (3). Then p|¢g = r|s. Let (y,n) and (x,&) be coordinate
systems on Y and X, respectively. Let J, denote the germ at o € X of the

Jacobian matrix
Op*(y) 99 (y)
oz o€
Op*(m) 99 (n) | -

oz o0&
Then
Jo(Jo) = i (25 60*
o s
is invertible by assumption. In particular, j& (8“0535@/)) = 8“05;30) is invertible.

Hence, the classical inverse function theorem applies: possibly replacing X
and Y by open subspaces, ¢ : Xg — Yy is an isomorphism. Hence, we may
assume that X =Y and ¢y = id.
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Possibly shrinking X further, we may assume that the ¢ x ¢ matrix
A=j5 (%@) with entries in C¥ (X)) is invertible. Let ( = A£. There is a
unique algebra automorphism of Ox which is the identity on CY, and which
maps &; to (;. Hence, we may assume that

©*(y;) =x; (mod N) and ¢*(n;)=¢& (mod N2)
where N = T'(Ny).

Define ¢y, : X — X by requiring g (z;) = vi, ¥5(&) = mi, and setting
Yy, = (id, ¢5) for k > 1, where

VL) = 5 (f — U1 () + Yha () -
Let Ax(f) = ¢"¢(f) - /. Then
Arri(F) = U () = F = 0 0s (Ar() + " UE() — f = —Do(Ar(f) -

By assumption, A¢(Ox) C Nx, so Ap(Ox) C N&¥™. In particular,
Yre* = idp, for k > ¢. Thus, ¢ has a left inverse 1) = 1,. Applying
Proposition 4.59, we see that the assumption of (3) applies to 1. By what we
have proved, 1) possesses a left inverse ¢, possibly after shrinking X. Then
¢ = ¢ = p on X, and this proves the assertion. ]

To globalise the Inverse Function Theorem, we introduce the cotangent
sheaf of a supermanifold.

Construction 4.78. Let X be a supermanifold and ¢; : U; — X open
embeddings such that the open subspaces V;p;(U;) cover X. For any index 1,
we have TU; = U; x RPil%  and we are given the bundle projection 7 on T'X.
Define subsheaves T;* C 7 .Ory; on V; as follows: Let T;*(m; *(U)) consist
of those f : TV;|y — R such that g = (T'g;)*(f) satisfies
g(u, W +w) = Ag(u,v) + gu,w) forall uegU, XegR, v,weg RPiI
In other words, g € Oy, (¢; 4 (U)) ® (RP:l4)* by Proposition 4.65.
Consider the identity sheaf morphism 7r07*(’)TVj|V__ — w00y, . We
(%] v
claim that it restricts to a sheaf morphism ;5 : T"|v;; — T;*[v;;. Indeed, let

f e T7(U) where U C Vjjp is open. Let g; = (T'y;)*f and g; = (T'p;)*f.
Then by Theorem 4.67,
9i(u,v) = (Tpi)* f(u,v) = (T(p; " 0 9:))*(Tp;)* f(u,v)
= g5 (05 (pi(u), d(p; ' o i) (u)v) .
The claim follows from Proposition 4.58.

By construction, we have 1, o ¥y 0 ¥;; = id on Vj;,.. Thus, by Proposi-
tion 3.18, there exists an up to canonical isomorphism unique Ox-module
sheaf T3 on X such that 75|y, = T;; it is called the cotangent sheaf of X.
By construction, this module sheaf is locally free of local rank dim, X at z.

By the above considerations, any morphism ¢ : X — Y gives rise to a
sheaf morphism (T'p)* : Ty — o Tx-

Definition 4.79. Let X be a supermanifold. Denote by Tx the sheaf
Der(Ox) of graded derivations, that is

Tx(U) = {6 € Hom(Ox v, Ox|U) | 5(f - g) = 8(f) - g+ (D)W f - 5(g)}
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The sheaf Tx is a left Ox-module. We call it the tangent sheaf of X.
For any morphism ¢ : X — Y, there is a morphism of Ox-module sheaves

Te:Tx — ¢ Ty = Ox ®<ﬂ510x goalTy ,
given by
Te(0)(f) =0d(e"(f)) forall 6 € Tx(U), feOy(V), wU)CV.

Proposition 4.80. For any supermanifold X, we have a natural isomorphism
¢ : Home, (Tx,Ox) = Tx of Ox-moduless. Explicity, the naturality means

6(ho (To)") = Tp((h) forall ¢: X —Y .
In particular, the Ox-module Tx is locally free of local rank dim, X .

Lemma 4.81. Let U be a superdomain with linear coordinate system (e;).
For any § € I'(Ty) and f € T'(Oy) , we have

DG

Proof. W.lo.g., ¢ is homogeneous. Then, set ¢'(f) =0(f) — >, 5(61-)(%. In

view of Proposition 4.11, we need to prove that §'(f), € md™ for all x € Up.
We have §'(1) = 0 and ¢’(e;) = 0, so 6’'(f) = 6(f — p) for any polynomial p
in e;. Fix x € Uy. By Corollary 4.17, there exists p such that (f —p), € md

By Proposition 4.16, m, is generated by u; = e; — e;(x). Now,

8 (ui - g) = 0(ug) - g+ (_1)|u¢\|5’|ui ' (g) = (_1)|u¢H6’|ul. -5 (g) .

It follows that &’,(m,) C m, and hence, that &, (m%™') c mZ™. This proves

the assertion. O

Proof of Proposition 4.80. Let U be an open subspace of V = RPI4. Recall
To = Oy ® V*. In view of Proposition 4.65, we may define ¢ = ¢y :
Home,, (T, Ov) — Tu by

o(h)(f) =h(df) forall h € Homp, (T, Ov)(W), f€Ou(W).

This clearly defines superderivations of the correct degree.

To see that this defines a natural morphism of sheaves, it suffices to check
this fact for superdomains, by Proposition 3.18 and Proposition 4.4. Thus,
let ¢ : U — U’ be a morphism of superdomains. Then

pur(ho (Te*))(f) = h((Ty)"df) = h(df (¢(u))(dp(u)v))
= h(d(f o)) = du(h)(¢*f) = (Te)(du(h))(f)
for u = idy €y U, v = idy €y V the generic points. Here, we have used
Proposition 4.59 and Theorem 4.67. This shows the naturality.

To see that ¢ is an isomorphism, it is sufficient to do this the case of a
superdomain. Given a superderivation 4, define h = 1 (9) by

h(z fi® Mi) = (=) fi6 () -
It is straightforward to check that this defines an Op-linear map.
For any pu € V*, we have dy = 1 ® u. Hence,

b(p(h)(f @ p) = (=) I fo(h) () = (—D)VIMF - h(1 @ p) = h(f @ p)
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so ¢ o ¢ = id and ¢ is injective.

Conversely,
. 1 of
_ — e+ FDUSIHel) 27 5¢ e
o(W(9)(f) = w(O)(df) = ;< Dl DIRed 225 e:)
_ N2
= ;&ez) 5o = 0
so that ¢ o1 = id, and the assertion is proven. U

Corollary 4.82. Let X be a supermanifold and x € Xog. We have
Tx oz = Der(Ox 4, R) = Hom(mx,x/n@(’x,R) and  Tx , = m,/m2 .

If o : X =Y is a morphism, then the sheaf map Ty induces an even linear
map Typp = (TQD)I : TX,I - 73’,(,00(33)'

Definition 4.83. The super-vector space T, X = Tx , is called the tangent
space of X at x. The map T, : T X — T, ()Y is called the tangent map
of ¢ at x.

A morphism ¢ : X — Y is called a submersion if T, is surjective for all
x € Xo. It is called a surjective submersion if in addition, g is surjective.
Furthermore, ¢ is called an immersion if T,y is surjective for all x € Xy. It
is called an injective immersion if in addition, ¢q is injective. An injective
immersion is called an embedding if pg : Xg — Yy is a topological embedding,
that is, its corestriction Xy — ¢o(Xp) is a homeomorphism if ¢o(Xy) is
endowed with the relative topology of Yj.

Theorem 4.84. Let p: X — Y be a morphism of supermanifolds which is
at the same time an immersion and a submersion. Then po(Xo) is open, so
that p(X) exists, and ¢ : X — ¢(X) is a local isomorphism.

Proof. The problem is local, and the statement will therefore follow once we
are able to express T, in terms of the Jacobian.

Thus, we may assume that X C V and Y C W are open subspaces of
linear supermanifolds. Let z € Xo. We have, for all § € T, X, f € Oy, ),

Tup(8)(f) = 6(¥*(f)), -

In particular, if (e;) is a coordinate system on V', and (f;) is a coordinate
system on W, then
9 9¢* (fi)
no( 2w =250
51780 861 (fl) aez
so in view of 4.75, the matrix expression of the germ of dy at x corresponds
to the linear map T, ¢. O

Corollary 4.85. Let p: X — Y be a morphism of supermanifolds such that
wo : Xo — Yo is bijective and ¢ is an immersion and a submersion.

Proof. By Theorem 4.84, ¢ : X — Y is a local isomorphism. In particular,
©r + Oy pp(z) = Ox o 1s an isomorphism for each = € Xo, and ¢o : Xo — Yo
is a homeomorphism. In view of Corollary 3.9, ¢* : Oy — ¢ +Ox is an
isomorphism of sheaves on Y = ¢o(X). Hence the assertion. O
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Proposition 4.86. Let ¢ : X — Y be a morphism and x € Xg such that
Tpp : Tp X — T,Y is surjective, where y = @o(x). Then there exists an open
neighbourhood U C'Y of y and a supermanifold Z such that ¢ : X|y — U is
isomorphic as a relative supermanifold to p1 : U x Z — U.

Proof. The problem is local, so that we may assume that X and Y are
superdomains and ¢ is a submersion.

Choose linear coordinate systems (e;) of X and (f;) of Y such that
0™ (f3)
( dej )1<i,j<p+q
subspace, we may assume X =Y’ x Z for some superdomains, and so the
morphism (¢, p2) : X — Y X Z is defined.
It satisfies the assumption of Theorem 4.84, so that passing to subdomains,

we have an inverse ¥. Then p; = ¢ o), by construction. (]

is invertible, where p|¢ = dimY. Passing to an open

Proposition 4.87. Let ¢ : X — Y be a morphism and © € Xy such
that Ty : T, X — T,Y is injective, where y = @o(x). Then there exist
open neighbourhoods U C X of x, V. C Y of y such that ¢~ (V) D U, a
supermanifold Z, and a point z € Zy, such that ¢ : U — V is isomorphic to
(id,2) : U - U x Z.

Proof. Again, we may assume that X and Y are superdomains and ¢ is an
immersion. Choose linear coordinate systems (e;) of X and (f;) of Y such

0™ (fi)
that( Je; )1<i,j<p+q

Let m|n = dimY, and let Z € R™ PI"~4 be a neighbourhood of 0, with

is invertible, where p|¢ = dim X.

linear coordinates e;, p + ¢ < @ < m + n, of parity |e;| = |fi|. Define
PY: XX Z—=Y by
i) = % .
pie*(fi) +ps(e) i>p+q.

Then the Jacobian matrix of ¥ takes the form

99" (fx)
(( g08(3216 )1<k,£<p+q 0) ,
1

*

so that v satisfies the assumptions of Theorem 4.84, and possesses a local
inverse. Let ¢ = ¢! o ¢. Observe that ¢*(pi(f;)) = ¢*(fi) for i < p+ ¢, so
that p; o ¢ = id. It follows that for ¢ > p + ¢, one has

¢"(pa(ei) = —¢" (1" (fi)) + ¢"(p1 * (" (fi)) + Pa(e:))
== (fi) +¢*(fi) =0.
Hence, ¢ = (id,0) : X — X x Z. O
Proposition 4.88. Let ¢ : X — Y be a morphism such that ¢o(Xo) is
locally closed in Yy, and v € Xo such that Tpp : T, X — T,Y s injective,
where y = @o(x). Then there an exists open neighbourhood V. C'Y of y,

a supermanifold Z, and a point z € Zy, such that o : o Y (V) — V is
isomorphic toid x z : =1 (V) = o H(V) x Z.

Proof. The set ¢o(Xy) is closed in an open neighbourhood, so we may assume
that it is closed. If ¢/ ¢ o(Xo), then there is an open neighbourhood W of
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y’ such that cpgl(W) = @. Hence, in the situation of Proposition 4.87, we
may construct V such that U = o~ 1(V). O

Corollary 4.89. An injective immersion ¢ : X — Y is an embedding if and
only if vo(Xo) is locally closed.

Proof. If ¢ is an embedding, then by assumption, pg(Xg) is locally compact,
hence locally closed. Conversely, Proposition 4.88 shows that (g possesses
local continuous inverses on ¢o(Xp), endowed with the relative topology.
Since g is injective, it is a homeomorphism. O

Corollary 4.90. Let o : X — Y be an embedding and f € pp.Ox (U), where
U C Yy is open. For each y € U N @o(Xo), there exists a neighbourhood
V CU ofy and h € Oy (V) such that ¢*(h) = f|v.

Proof. In view of Proposition 4.88 and Corollary 4.89, we may assume that
v = (id,0) : X — X x Z =Y where X, Y, Z are open neighbourhoods
of 0, and that y = (0,0). Given f, define h on generalised points by
h(z,z) = f(x). O

Definition 4.91. Let X be a supermanifold and Yy C Xy a subspace. A
subspace of X on Yj is a super-ringed space Y = (Yp, Oy), together with a
morphism jy = (jy,0,Jy) : Y — X where jy, : Yo — X is the inclusion and
Jy - jﬁéox — Oy is an epimorphism. If, moreover, Y is a supermanifold,
then it is called a subsupermanifold.

Any subspace Y comes with a canonical ideal sheaf Zy. It is the subsheaf
of j;é@ x defined as the kernel of j5-. The data of Yy and Zy determine YV

uniquely up to isomorphism. Therefore, Zy is called the defining ideal of Y.

Proposition 4.92. Let ¢ : X — Y be an injective immersion. The set
vo(Xo) carries a unique structure of supermanifold, denoted o(X), such
that ¢ factors into an isomorphism X — ¢(X) and an injective immersion
o(X) = Y. The supermanifold ¢(X) is a subsupermanifold of Y if and only
if ¢ is an embedding, if and only if po(Xo) is locally closed. In this case, the
defining ideal is T,(x) = ker(p* : Oy — p0.Ox).

Proof. Equip ¢o(Xo) with the final topology with respect to ¢g. Then g
induces a homeomorphism @ : Xo — ¢o(Xo). Defining O (x) = $0:Ox,
we obtain a super-ringed space ¢(X). There manifestly is an isomorphism
@ : X — p(X), so the latter is indeed a supermanifold. Moreover, o @~*
is an injective immersion ¢(X) — Y. The uniqueness of the supermanifold
structure (up to isomorphism) is trivial.

Let juo(x0),0 ¢ P0(Xo) — Yo be the inclusion. By definition, ¢(X) is a
subsupermanifold if and only if po(X() carries the relative topology of Yp,
and * induces an epimorphism

Oy = Jpo(x0),0:Op(x) = #0+0x -

In consequence of Corollary 4.89, the condition on the topology of ¢o(Xo)
is satisfied if and only if ¢ is an embedding, if and only if ¢ (Xp) is locally
closed. Moreover, if ¢ is an embedding, then Corollary 4.90 and Corollary 3.9
imply that ¢* indeed induces an epimorphism of sheaves. O
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Definition 4.93. If ¢ : X — Z and ¢ : Y — Z are morphisms, then a
supermanifold W is called the fibre product of ¢ and ¢, and denoted X xz Y,
if it is the product of ¢ and ¢ in the category of morphisms V' — Z. That
is, on the level of S-points,

(X xzY)(S) = {(z,9) € X(5) x Y(5) | p(z) =9 (y)} -
This determines X X 7Y uniquely up to isomorphism (by the Yoneda lemma).

Proposition 4.94. Let X,Y, Z be supermanifold, ¢ : X — Z be a surjective
submersion and 1 'Y — Z any morphism. Then X Xz Y exists, is a closed
subsupermanifold of X XY, and py : X Xz Y — Y is a surjective submersion.
Its dimension is

dim(%y) (X xzY)=dim, X — dimtpo(w) Z +dim, Y .

The defining ideal Ixy v of X xzY as a subspace of X xY is the image
under (¢ x )* of Ia,, the defining ideal of the diagonal Ay C Z x Z.

In particular, if v = jy :' Y — Z is the inclusion of an (open/closed)
subsupermanifold, then the subspace ¢ 1(Y) = X xz Y is an (open/closed)
subsupermanifold of X, of codimension

codimy , o ' (V) = codimy () Y .

Proof. To show that X Xz Y exists and that the projection X xzY — Y
is a surjective submersion, we may in view of Proposition 4.48 and Propo-
sition 4.86 assume X = X’ x Z and ¢ = ps. Then satisfies the universal
property of X Xz Y, since we may compute

X'(S)x Y (9) = {(:U,z,y) € X'(S) x Z(S) x Y(9) ‘ z = w(y)}

where the natural bijection sends (z,y) to (z,%(y),y). Moreover, the mor-
phism po : X' x Y — Y is certainly a surjective submersion.

Thus, X Xz Y exists and ps : X Xz Y — Y is a surjective submersion.
We have the natural morphism j: X Xz Y — X X Y defined on generalised
points by j(z,y) = (z,y). Furthermore, by construction, j locally identifies
with morphism X' xY — X’ x Z xY given on points by (z,y) — (z,%(y),y).
This morphism is manifestly an injective immersion; since

Jo(Xo x 7, Yo) = {(z,y) € Xo x Yo | wo(z) = vo(y)}

is closed, so that j is a closed embedding, and by Proposition 4.92, it identifies
X Xz Y with a closed subsupermanifold of X x Y.

If ¢ = jy, then we have the embedding id xjy : X x Y — X x Z. The
morphism (id, ¢) : X x X x Z is also an embedding, and since

(id,9)s((X x Z)(8)) = {(2,2) €s X x Z | p(2) = 2} ,

we have that (id, ) restricts to an isomorphism ¢~1(Y) — X xz Y. Hence,
o 1Y) is a supermanifold, and because (id,¢) o Jo—1(v) is an embedding,
80 is j,-1(y). Thus, ¢ 1(Y) is a subsupermanifold of X. If Yj is open
resp. closed in Zy, then ¢~!(Yp) is open resp. closed in Xj. O
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5. QUOTIENTS AND ACTIONS

5.1. Godement’s theorem on quotients.

Definition 5.1. Let X be a supermanifold R — X x X a subspace. Then
R is called an equivalence relation if R(S) is an equivalence relation on X (.5)
for any supermanifold S. We let m; =pjojr: R — X, j=1,2.

Define the ringed space X/R by letting (X/R)y = Xo/Rp, with the
quotient topology, and taking the structure sheaf Ox/g to be defined by

Ox/r(U) = {f € Ox(ny "(U)) | i f =5 f}

where 7y : Xo — Xo/Ryp is the canonical projection.
There is a canonical morphism 7 : X — X/R, called the canonical
projection, defined by m = (mg, 7*) where 7*(f) = f.

Remark 5.2. The quotient X/R enjoys by definition the following universal
property: If ¢ : X — Y is a morphism such that pom; = pom: R—Y,
then there is a unique morphism ¢ : X/R — Y such that ¢ = g o .

Indeed, if ¢ is given, then 7j¢*(f) = m5¢*(f) for any local section f of
Oy. Thus, ¢* factors through 7* : 770_1(9)(/1% — Ox.

The universal property may be rephrased as follows: If for any (u,v) €g R,
one has ¢(u) = ¢(v), then there is a unique morphism ¢ : X/R — Y such
that @ om = ¢. Observe also that Y may be any super-ringed space!

Theorem 5.3. Let R be an equivalence relation on a supermanifold X. The
following are equivalent.

(1). X/R is a possibly non-paracompact supermanifold and 7 : X — X/R
is a submersion.

(2). R is a closed subsupermanifold of X x X, and my : R — X is a
submersion.

In this case, w, ™1, and my are surjective submersions, and
R=X XX/R X .

If in addition, Xg is second countable or my has the path-lifting property,
then Xo/ Ry is paracompact.

Proof. (1) = (2). By assumption, Proposition 4.94 implies that X x x,r X
is a closed subsupermanifold of X x X. On points,

(X xx/r X)(8) = {(z,y) €5 X x X | m(2) = 7(y)} ,

and in particular, Ry = Xo X x,/r, Xo is locally closed in Xo x Xo.
If ¢ €5 R, then for jr(¢) = (z,y), one has

z*(7*(f)) = ¢"Irpi(f) = ¢*m(f) = ©"m3(f) = ¢ drpa(f) = v* (7" (f))
for all local sections f of Ox/g, so that m(z) = 7(y). In other words,
R(S) C (X xx/r X)(S), and there is a monomorphism R — X Xx/r X.

In particular, Zr and IXXX/RX are both sheaves on Ry, and the latter is a
subsheaf of the former.
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By the very definition of Ox/g, we have an equaliser diagram of sheaf
morphisms on X,

T

-1 T*
o OX/R OX ﬂ'j,O*OR .

*
)

In other words, the kernel of j}, = (71 X p2)* : Oxxx — Jjr,0<OR is exactly
the image under (7 x m)* of ker 8 : Ox /gy x/r — 00+Ox/g. The former is
IR, and the latter is IxXxx pX- Thus, R = X xx/r X, which gives our claim.

(2) = (1). By assumption, the Rg-saturation 7 *(mo(U)) = pa(p; (U))
of U is open for any open U C X (p2 being a surjective submersion).
Moreover, if z,y € Xy are inequivalent, there exists an open neighbourhood
U C Xo x Xg of (z,y) such that U N Ry = &, since Ry is closed. Then there
exist V, W C Xg, open neighbourhoods of z and y, respectively, such that
V x W C U. By construction, my(V) Nmo(W) = &, and these sets are open.
Thus, Xo/Ry is a Hausdorff space and 7y : Xo — Xo/Rp is open.

If Xy is second-countable, then so is Xy/Rp, since 7y is open; in this
case, Xo/ Ry is paracompact. Thus, it will be sufficient to prove that Xy/Ro
is paracompact if my has the path-lifting property. It will follow from our
considerations below that Xo/Ry is locally Euclidean and 7 : Xo — Xo/Ro
is a topological submersion. Hence, in view of Lemma 77, it will thus be
sufficient to prove that every connected component is second countable. If
C' is such a connected component, 7, '(C) is closed in X, and therefore
paracompact. If C’ is a connected component of m; (C), then it is second
countable, by the lemma. Since Xy/Ry is locally path-connected, C' is a path
component. Since 7y has the path-lifting property, we have C' = mo(C"), and
since C" is second-countable, it follows that so is C. By Theorem ?7, C' is
paracompact. Since C' was arbitrary, so is X.

To prove that X/R is a supermanifold and 7 is a submersion is now a
local problem. Let x € X¢. Then 7 1(ac) is a closed subsupermanifold of R,
by Proposition 4.94. It may be viewed as a subsupermanifold R(x) of X wvia
the identification on points given by

™y ' (2)(S) = {(y,2) €5 X x X | (y,7) €5 R}
=~ {yes X | (y,x) €s R} = R(z)(5) .

By Proposition 4.88, there is an open neighbourhood U C X of z and
a closed subsupermanifold Z C U such that T,Z ® T, R(z) = T, X. Then
75 1(Z) is a closed subsupermanifold of the open subspace 7, }(U) C R. We
claim that m : 75,1 (Z) — U is a local isomorphism around (z,2). We have

mod =1id on Z and 7 o (id, z) = id on R(x)
(where 0 is the diagonal morphism). Hence, we have
T.X =T, Z® Ty R(z) Cim T, ,ym
On the other hand,
dim, 4y 75 ' (Z) = dim R, ;) — codimx , Z
= dim R, ;) — dim(, 4) 7yt (z) = dim, X
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where the last equality follows since my : R — X is a submersion. Theo-
rem 4.84 applies, and by shrinking U, we may assume that 7 : 7, ' (Z) — U
is an isomorphism. Let ¢ = myom; ' : U — Z, so that m; *(u) = (u,(u)).
By definition, ¢ (u) €gs Z is uniquely determined by (u,(u)) €s R.

By the universal property of 7, there exists a unique morphism @Z) making
the following diagram commutative:

On the other hand, let 7’ : Z — U/R be defined by 7’ = 7o jz. We have
Pojz=1idyg, so
por' =domojz=1pojz=idz .

Conversely, we have (jz(¢(u)),u) €g R for all u €g R, by definition. This
implies 7(jz(¢(u))) = w(u). Since we may take v = idy €y U, this implies
mojzo1 =m. (Yoneda’s lemma does not apply directly, because we have
as yet not shown that U/R is a supermanifold.) Thus,

roponr=noyp=mojzop=m.
The uniqueness statement in Remark 5.2 gives 7’ o ) = idy/g, and this

implies that U/R = Z, so the former is indeed a supermanifold. Since v is a
surjective submersion, so is 7 : U — U/R. U

In the course of the proof, we have used the following fact.

Theorem 5.4. Let X be a topological manifold, i.e. a Hausdorff space in
which each point has an open beighbourhood homeomorphic to an open subset
of some RI. The following are equivalent:

(1). X is metrisable;

(2). X is paracompact;

(3). the connected components of X are o-compact;

(4). the connected components of X are second countable.

Proof. For the proof of the equivalence, w.l.o.g. we may assume that X is
connected.

(1) = (3). We show the following statement: If X is connected, metrisable,
and locally compact, then it is o-compact. Choose some metric d which defines
the topology. For x € X, r > 0, let B,(x) be the closed r-ball around z.
Since X it is locally compact, for any z, there is some r > 0 such that B, (z)
is compact. Let r(z) € (0, 00] be defined by

2-7(z) =inf{r > 0| B,(z) is compact} .

If r(z) is infinite for some x, then X is o-compact, so we may assume that
r(x) is finite for all x.
By definition, if d(x,y) < ¢, then 2r(z) > 2r(y) — ¢, so that

N

r(z) —r(y)| <
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In particular, r is continuous. Moreover, this implies

() Ar,y) < 2 () = 7€ Byy(y)
In fact,
ry) > r(z) — 5 - day) > @) 5 r(@) = 2 r(a) > dlay)

For any subset K C X, set

K' = | By .
rzeK

We let Ky = {x9} where zy € X is arbitrary, and define K, 11 = K],
inductively. Then Y = J;2, K; is open, and by (x), it is closed. Since X
is connected, X =Y is o-compact once we have shown that the K,, are
compact.

We claim that for any compact K C X, K’ is also compact. Let z, € K’
be a sequence. There are y; € K such that z; € By, (yr) where 7, = r(yg).
Passing to a subsequence, we may assume that yp — y € K, sory — r = r(y).
For any 2 > ¢ > 1, there is ng such that ry < ¢r for all k > ng, so zx € By, (y)
for all k > ngy. Since the latter ball is compact, (zx) has a subsequence which
converges t0 & € (gs 4~ Bgr(2) = Br(z) C K'. Hence, K’ is compact, and
we have proved our claim.

(3) = (4). Each compact subset of X has a finite cover by second countable
open subsets of X, so the statement follows easily.

(4) = (1). This is the Urysohn metrisation theorem.

(2) = (3). We show: Any connected, locally compact, paracompact space
is o-compact. There is a locally finite cover U of X by non-void open
sets of compact closure. Let Uy € U. Inductively, given Uy,..., Uy, let
Unit,-.-,Unin be the members of U that Up,...,Uy intersect. Then

U=Uj,Uj = UjZUj is open and # @. If € U, then by the local

finiteness of U, for some N, one has x € U;V:o Uj = U;V:oﬁj C U. Therefore,
U is closed and X = U is o-compact.

(4) = (2). We prove: Any connected, locally compact and second countable
space is paracompact. Any x € X has a has an open neighbourhood with
compact closure. Hence, any compact K C X has an open neighbourhood
with compact closure. Inductively, one may construct open subsets U; C X,
such that U; C Uj41 is compact, and X = U?io Uj.

It will be sufficient to show that (U,,) has a locally finite refinement. Let
K, =U,\Up_1 and V,, = Uy 41 \ Up_2 so that K, is compact, V,, is open,
and V,,_1 C K,, CV,. Here, welet U_1 =U_o = @.

Let (W;) be a countable base of the topology of X (this exists, in view of
the equivalence of (3) and (4)). For each n, there exist finitely many indices
Jnls -+ Jnm, such that W, . C V, and K, C UZZ”I Wi;... The collection
(W) is an open locally finite refinement of (Uy,). O

5.2. Actions and quotients.
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Definition 5.5. Let G be a Lie supergroup, X a supermanifold. A morphism
a:Gx X — X is a left action of G on X if

Oé(l,l‘) =z and Oé(glgg,JT) = O‘(gb 04(927 .%'))
for all x €5 X, ¢1,92 €g G. Similarly, one may define right actions. One
also says that X is a (left resp. right) G-supermanifold.
An action is free and proper if the morphism

(,id) : G x X - X x X

is a closed embedding. In this case, R = R, = («,id)(G x X) is a closed
submanifold, and an equivalence relation on X. (Similarly, R = (id, a)(X x G)
in the case of a right action.) One defines X/G = X/R in the case of a right
action. In the case of a left action, one writes instead G\ X.

Proposition 5.6. Let X be a free and proper G-supermanifold. Then the
quotient X /G resp. G\X exists, and the canonical projection m is a surjective
submersion.

Proof. In the case of a left action, note that mo : R — X identifies under the
isomorphism (¢, id) : G x X — R with ps : G x X — X, which is clearly a
submersion. Thus, Theorem 5.3 applies. O

Definition 5.7. Let G be a supergroup. A closed subsupergroup is a closed
submanifold H which is at the same time a Lie supergroup, such that the
embedding jr : H — G is a morphism of supergroups.

Corollary 5.8. Let G be a Lie supergroup and H a closed subsupergroup.
Consider the natural right action of H on G. Then G/H exists, and the
canonical projection m : G — G/H is a surjective submersion. The quotient
G/H is naturally a left G-space.
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