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4 1. Basic Measure Theory

1Basic Measure Theory

1.1 Measures and Measurability

Definition 1.1.1. Let X be a set. A map µ : P(X) → [0, ∞] is a measure on X if

µ(∅) = 0 and µ(A) 6
∞

∑
k=0

µ(Ak) whenever A ⊂
∞⋃

k=0

Ak .

In particular, µ is increasing and σ-subadditive.
NB. Usually, measures as defined above are referred to as outer measures whereas usual
measures are commonly supposed to be defined on some σ-algebra of sets possibly
smaller than P(X) . Any such common measure can be extended to an outer measure.

Definition 1.1.2. If Y ⊂ X and µ is a measure on X , then its restriction µ Y is defined
by (µ Y)(A) = µ(A ∩Y) for all A ⊂ X . It is a measure on X .

A subset A ⊂ X is said to be µ measurable if µ = µ A + µ (X \ A) , i.e.

µ(B) = µ(B ∩ A) + µ(B \ A) for all B ⊂ X .

It is immediate that A is µ measurable whenever µ(A) = 0 , and that A is µ measurable if
and only X \ A is. Moreover, since the inequality 6 always true, it suffices to prove > to
prove that A is µ measurable. In particular, it suffices to consider sets B with µ(B) < ∞ .
Denote by M(µ) the set of µ measurable sets.

A set such that µ(A) = 0 shall be called µ negligible or a µ zero set. Correspondingly,
X \ A shall be called a µ cozero set. Often, we shall say that some predicate P is true µ

almost everywhere (µ a.e.) or that P(x) is valid for µ almost every x ∈ X ; by which token
we shall mean that the set {P} = {x ∈ X|P(x)} is µ cozero.

Proposition 1.1.3. Let Ak ⊂ X be µ measurable.

(i).
⋃∞

k=0 Ak and
⋂∞

k=0 Ak are µ measurable.

(ii). If Ak are disjoint, then µ
(⋃∞

k=0 Ak
)

= ∑∞
k=0 µ(Ak) .

(iii). If Ak ⊂ Ak+1 , then limk µ(Ak) = µ
(⋃∞

k=0 Ak
)

.

(iv). If Ak ⊃ Ak+1 and µ(A0) < ∞ , then limk µ(Ak) = µ
(⋂∞

k=0 Ak
)

.

Proof. Clearly, the statement in (i) on intersections follows from that on unions by taking
complements in X, and similarly (iv) follows from (iii) by taking complements in A0 .
First, let us prove (i) for finite unions. It suffices to consider the A0 ∪ A1 where Aj ,
j = 0, 1 , are µ measurable. For B ⊂ X ,

µ(B) = µ(B ∩ A0) + µ(B \ A0)
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= µ(B ∩ A0) + µ
(
(B \ A0) ∩ A1

)
+ µ

(
(B \ A0) \ A1

)
> µ

(
B ∩ (A0 ∪ A1)

)
+ µ

(
B \ (A0 ∪ A1)

)
,

so A0 ∪ A1 is µ measurable.

Now to (ii). Let (Aj) be disjoint and define Bk =
⋃k

j=0 Aj . Then Bk is µ measurable,

Bk+1 ∩ Ak+1 = Ak+1 and Bk+1 \ Ak+1 = Bk .

Thus,

µ
(⋃k+1

j=0
Aj

)
= µ(Bk+1) = µ(Ak+1) + µ(Bk) =

k+1

∑
j=0

µ(Aj) .

Therefore,
∞

∑
j=0

µ(Aj) 6 µ
(⋃∞

j=0
Aj

)
,

and the converse inequality is trivial.

Now, (iii) follows immediately, since

limk µ(Ak) = µ(A0) +
∞

∑
k=0

(
µ(Ak+1)− µ(Ak)

)
= µ(A0) +

∞

∑
k=0

µ(Ak+1 \ Ak)

= µ
(

A0 ∪
⋃∞

k=0
(Ak+1 \ Ak)

)
= µ

(⋃∞

k=0
Ak

)
.

Now to the case of infinite unions in (i). Let B ⊂ X , µ(B) < ∞ . Any µ measurable set is
µ B measurable. In particular, Bk , defined as above, are µ B measurable. Hence, by
(iii) and (iv),

µ(B) = (µ B)(X) = limk
(
(µ B)(Bk) + (µ B)(X \ Bk)

)
= (µ B)

(⋃∞

k=0
Bk

)
+ (µ B)

(⋂∞

k=0
(X \ Bk)

)
= µ

(
B ∩

⋃∞

k=0
Bk

)
+ µ

(⋃∞

k=0
(B \ Bk)

)
,

and thus follows the assertion. �

Definition 1.1.4. A set A ⊂ P(X) is a σ-algebra if ∅ ∈ A , X \ A ∈ A whenever A ∈ A ,
and

⋃∞
k=0 Ak ∈ A whenever Ak ∈ A .

Thus, by proposition 1.1.3, M(µ) is a σ-algebra. By the same token, the of all µ zero
(resp. µ cozero) sets is closed under countable unions and intersections, although it is
usually not a σ-algebra.

The intersection of σ-algebras is a σ-algebra. Thus, for any A ⊂ P(X) , there exists a
smallest σ-algebra containing A .

If X is a topological space, the Borel σ-algebra B(X) is the smallest σ-algebra contain-
ing the topology of X . Sets A ∈ B(X) are called Borel (after E. Borel).
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Definition 1.1.5. Let µ be a measure on X . µ is called

finite if µ(X) < ∞ ,

regular if for all A ⊂ X , there exists a µ measurable B ⊃ A so that µ(A) = µ(B) .

Now let X be a topological space. µ is said to be

Borel if all Borel sets are µ measurable

Borel regular if µ is Borel and for all A ⊂ X , there is a Borel B ⊃ A so that µ(A) = µ(B) ,

Radon if µ is Borel regular and finite on compacts.

We briefly study the special properties of measures satisfying these conditions.

Proposition 1.1.6. Let µ be a regular measure on the set X . If Ak ⊂ Ak+1 ⊂ X are (not
necessarily measurable) subsets, then limk µ(Ak) = µ

(⋃∞
k=0 Ak

)
.

Proof. Let Bk ⊃ Ak be µ measurable, such that µ(Ak) = µ(Bk) . Let Ck =
⋂∞

j=k Bj . Then
µ(Ak) 6 µ(Ck) 6 µ(Bk) , and thus µ(Ck) = µ(Ak) . We have Ak ⊂ Ck ⊂ Ck+1 and Ck are
measurable. Thus, by proposition 1.1.3 (iii),

limk µ(Ak) = µ
(⋃∞

k=0
Ck

)
> µ

(⋃∞

k=0
Ak

)
> supk µ(Ak) = limk µ(Ak) ,

proving the claim. �

Proposition 1.1.7. Let X be a topological space and µ a Borel regular measure on X .
If A ⊂ X is µ measurable and µ(A) < ∞ , then µ A is finite and Borel regular, in
particular, a Radon measure.

Proof. µ A is a Borel measure, and (µ A)(X) = µ(A) < ∞ . Since µ is Borel regular,
there exists a Borel B ⊃ A so that µ(B) = µ(A) . Since A is µ-measurable, B \ A is µ

negligible. Thus, for all C ⊂ X ,

(µ B)(C) = µ(C ∩ B ∩ A) + µ
(
(C ∩ B) \ A

)
= µ(C ∩ A) = (µ A)(C) ,

and we may assume that A be Borel.

To see that µ A is Borel regular, let C ⊂ X . There exists a Borel D ⊃ C ∩ A such
that µ(D) = (µ A)(C) . Let E = D ∪ (X \ A) . Then E is Borel, and E ⊃ C . Moreover,

(µ A)(C) 6 (µ A)(E) = (µ A)(D) 6 µ(D) ,

and thus, (µ A)(C) = (µ A)(D) . �
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Lemma 1.1.8. Let X be topological, and every open subset be an Fσ (e.g., X is metris-
able).1 Let µ be a Borel measure on X , and B ⊂ X Borel.

(i). If µ(B) < ∞ , then for all ε > 0 , there exists a closed C ⊂ B so that µ(B \ C) 6 ε .

(ii). If B is contained in the union of countably many µ finite open sets, then for all
ε > 0 , there exists an open U ⊃ B so that µ(U \ B) 6 ε .

Proof of (i). Note that ν = µ B is a finite Borel measure. Let

F =
{

A ∈ M(µ)
∣∣ ∀ε > 0 ∃ closed C ⊂ A : ν(A \ C) 6 ε

}
Of course, all closed subsets of X are contained in F . Let (Ak) ⊂ F and fix ε > 0 . There
exist closed Ck ⊂ Ak such that µ(Ak \ Ck) 6 ε

2k+1 . Then

ν
(⋂∞

k=0
Ak \

⋂∞

k=0
Ck

)
6 ν

(⋃∞

k=0
Ak \ Ck

)
6

∞

∑
k=0

ν(Ak \ Ck) 6 ε .

Since
⋂∞

k=0 Ck is closed,
⋂∞

k=0 Ak ∈ F . Similarly,

limk ν
(⋃k

j=0
Aj \

⋃k

j=0
Cj

)
= ν

(⋃∞

k=0
Ak \

⋃∞

k=0
Ck

)
6 ν

(⋃∞

k=0
Ak \ Ck

)
6 ε ,

so ν
(⋃∞

k=0 Ak \
⋃k

j=0 Cj
)

6 2ε for some k , and we conclude
⋃∞

k=0 Ak ∈ F .

Since every open subset of X is an Fσ , F contains all open subsets of X . Moreover,

G =
{

A ∈ F
∣∣ X \ A ∈ F

}
is a σ-algebra containing the topology of X . Hence, B ∈ B(X) ⊂ G ⊂ F , and thence
our assertion.

Proof of (ii). Let B ⊂ ⋃∞
k=0 Uk where Uk ⊂ Uk+1 are open, µ(Uk) < ∞ . Then Uk \ B

are µ finite Borel sets, so we may apply (i) to find closed subsets Ck ⊂ Uk \ Bk such that
µ
(
Uk \ (B ∪ Ck)

)
6 ε

2k+1 . Clearly, B ⊂ U :=
⋃∞

k=0(Uk \ Ck) , which is open. Moreover,

µ(U \ B) 6
∞

∑
k=0

µ
(
Uk \ (B ∪ Ck)

)
6 ε ,

which establishes the proposition. �

Theorem 1.1.9. Let X be topological, and every open subset be an Fσ (e.g., X is metris-
able). Let µ be a Borel regular measure on X , and assume that X =

⋃∞
k=0 Uk where

Uk ⊂ X are open and µ finite.

(i). For all A ⊂ X , µ(A) = inf
{

µ(U)
∣∣ A ⊂ U , U open

}
(’outer regularity’).

1If (X, d) is metric, U ⊂ X open, then U =
⋃∞

j=1 Cj where Cj = {dist(xy, X \U) > 1
j } .
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(ii). For all A ∈ M(µ) , µ(A) = sup
{

µ(C)
∣∣ C ⊂ A , C closed

}
(’inner regularity’).

(iii). If X is Hausdorff and σ-compact, we may take compacts in place of closed sub-
sets in (ii).

Proof of (i). If µ(A) = ∞ , the statement is clear. Let µ(A) < ∞ . There exists a Borel
B ⊃ A so that µ(A) = µ(B) . Fix ε > 0 . By lemma 1.1.8 (ii), there exists an open U ⊃ B
such that µ(U \ B) 6 ε , and

µ(U) = µ(B) + µ(U \ B) 6 µ(B) + ε = µ(A) + ε ,

so we have the claim.

Proof of (ii). Let A ⊂ X be µ measurable and assume first that µ(A) < ∞ . Then µ A
is a Radon measure by proposition 1.1.7. Because (µ A)(X \ A) = 0 , by (i), we can
obtain for given ε > 0 an open U ⊃ (X \ A) so that (µ A)(U) 6 ε . The set C = X \U
is closed and contained in A . Furthermore,

µ(A) = µ(C) + µ(A \ C) = µ(C) + (µ A)(U) 6 µ(C) + ε ,

so µ(A) = sup
{

µ(C)
∣∣ C ⊂ A , C closed

}
.

Now, let µ(A) = ∞ . Let Kj = Uj+1 \
⋃j

k=0 Uk where X =
⋃∞

k=0 Uk , Uk being µ finite
open sets. Then Kj are disjoint, Borel, µ finite, and X =

⋃∞
j=0 Kj . Thus

∞

∑
j=0

µ(A ∩ Kj) = µ
(⋃∞

j=0
(A ∩ Kj)

)
= µ(A) = ∞ .

Since µ(A ∩ Kj) < ∞ , there exist closed Cj ⊂ A ∩ Kj such that µ(A ∩ Kj) 6 µ(Cj) + 1
2j .

Hence ∑∞
k=0 µ(Cj) = ∞ , and

limk µ
(⋃k

j=0
Cj

)
= µ

(⋃∞

j=0
Cj

)
=

∞

∑
j=0

µ(Cj) = ∞ .

This proves the equation also in the case of infinite measure.

Proof of (iii). Any compact is closed, and any closed set is the countable ascending
union of compacts. �

Theorem (Carathéodory’s criterion) 1.1.10. Let (X, d) be metric and µ a measure on X .
If µ(A ∪ B) = µ(A) + µ(B) whenever A, B ⊂ X satisfy dist(A, B) > 0 , then µ is a Borel
measure.

Proof. It is sufficient to show that any closed C ⊂ X is µ measurable. Let A ⊂ X ,
µ(A) < ∞ . We claim that µ(A ∩ C) + µ(A \ C) 6 µ(A) .
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Let Cn =
{

x ∈ X
∣∣ dist(x, C) 6 1

n

}
. Then

dist(A \ Cn, A ∩ C) > dist(X \ Cn, C) > 1
n > 0 .

Hence,
µ(A \ Cn) + µ(A ∩ C) = µ

(
(A \ Cn) ∪ (A ∩ C)

)
6 µ(A) .

Thus, our claim follows as soon as limn µ(A \Cn) = µ(A \C) . Let Dk = (A∩Ck) \Ck+1 .
Then A \ C = A \ Cn ∪

⋃∞
k=n Dk , and thus

µ(A \ Cn) 6 µ(A \ C) 6 µ(A \ Cn) +
∞

∑
k=n

µ(Dk) ,

so it suffices to prove ∑∞
k=1 µ(Dk) < ∞ . Note that dist(Dk, D`) > 0 as soon as |k− `| > 2 .

Therefore,

∞

∑
k=1

µ(Dk) = supm>1

[ m

∑
k=1

µ(D2k) +
m

∑
k=1

µ(D2k−1)
]

= supm>1

[
µ
(⋃m

k=1
D2k

)
+ µ

(⋃m

k=1
D2k−1

)]
6 2µ(A) < ∞ ,

so the claim and hence the theorem follow. �

1.2 Support of a Measure

Definition 1.2.1. Let X be a set, µ a measure on X . If C ⊂ X , then µ is said to be
concentrated on C if X \ C is µ-negligible. If X is topological and C is closed, then µ is
said to be supported on C if it is concentrated on C .

Moreover, let supp µ , the support of µ , be the set of all x ∈ X such that µ(U) > 0 for
all neighbourhoods U of x . Then supp µ is closed.

Proposition 1.2.2. If X is a σ-compact Hausdorff space, and µ is a Radon measure, then
µ is supported on supp µ . (I.e., supp µ is the complement of the largest open negligible
subset of X .)

Proof. Let U = X \ supp µ . Let C ⊂ U be compact. Then C is contained in a finite union
of open µ negligible sets, so µ(C) = 0 . By theorem 1.1.9 (iii), µ(U) = 0 . �

Remark 1.2.3. Although it is not too easy to construct counter-examples, not every Borel
regular measure is supported on its support. Compare [Fed69, ex. 2.5.15] for an example
with X = [−1, 1]J , J uncountable.

Definition 1.2.4. A cardinal α is called an Ulam number if for any measure µ on a set X ,
and any disjoint family F , #F 6 α , µ

(⋃F
)

< ∞ , such that
⋃ G is µ measurable for all

G ⊂ F , we have (
∀A ∈ F : µ(A) = 0

)
⇒ µ

(⋃
F

)
= 0 .
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Clearly, any finite cardinal, and also the cardinality of a countable infinity, ℵ0 = #N ,
is an Ulam number. The statement that any cardinality of a set is an Ulam number is
consistent with the ZFC axioms of set theory, cf. [Fed69, 2.1.6].

Theorem 1.2.5. Let X be metric, µ a finite Borel measure. Then supp µ is separable. If
X contains a dense subset Y such that #Y is an Ulam number, then µ is supported on
supp µ .

Proof. For An ⊂ supp µ be maximal with property that for any distinct x, y ∈ An ,
d(x, y) > 2

n . Then An =
{

B(x, 1
n )

∣∣ x ∈ An
}

is disjoint, and

∑A∈An
µ(A) = µ

(⋃
An

)
6 µ(X) < ∞ ,

so An is countable. For all x ∈ X , there exists y ∈ An such that d(x, y) 6 2
n . Therefore,⋃∞

n=1 An is dense.

W.l.o.g., assume that #X is infinite. If α = #Y is an Ulam number for some dense
Y ⊂ X , then the set of balls with rational radii centred on y ∈ Y has cardinality α ,
and forms a base of the topology of X . Thus, there exists a family U of µ neglible open
subsets of X , such that

X \ supp µ =
⋃
U and #U 6 α .

Choose a well-ordering � of U .2 For U ∈ U and n ∈ N \ 0 , let

Cn(U) =
{

x ∈ X
∣∣ V ≺ U ⇒ x 6∈ V , dist(x, X \U) > 1

n

}
.

Clearly, Cn(U) is closed. Moreover,

⋃
U =

∞⋃
n=1

⋃
Cn where Cn =

{
Cn(U)

∣∣ U ∈ U
}

.

If x, y ∈ ⋃ Cn are such that x ∈ Cn(U) and y ∈ Cn(V) where U 6= V , we may assume
U ≺ V . Hence, d(x, y) > 1

n . This implies that Cn is disjoint; furthermore, if F ⊂ Cn ,
then

x ∈
⋃
Cn \

⋃
F ⇒ B

(
x, 1

2n

)
⊂

⋃
Cn \

⋃
F ,

so
⋃F is closed in

⋃ Cn . If x ∈ ⋃U \ ⋃ Cn , then x ∈ U for some U ∈ U , and we have
δ = 1

2 − dist(x, X \U) > 0 . Thus, B
(
x, δ

2

)
⊂ X \ Cn(U) and B(x, 1

4 ) ⊂ X \ Cn(V) for all
V 6= U . Therefore

⋃ Cn is locally closed, and
⋃F is µ measurable. Since #F 6 α , we

find µ
(⋃ Cn

)
= 0 . Hence, µ

(⋃U
)

= 0 . �

2Recall that a well-ordering on a set P is an order such that each non-empty subset of P has a least
element. Any well-ordering is total. The statement that any set can be well-ordered is equivalent to the
axiom of choice.
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Corollary 1.2.6. Let X be complete metric, µ a finite Borel measure. If #X is an Ulam
number, then µ is concentrated on a σ-compact.

Proof. Let (xn) ⊂ supp µ be a dense sequence. Define Lk` =
⋃`

j=0 B
(
xj, 1

k

)
. Since µ is

concentrated on supp µ , for all k > 1 , and any ε > 0 , there exists `k,ε ∈ N such that
µ
(
X \ Lk,`k,ε

)
6 ε

2k . Let Kε =
⋂∞

k=1 Lk,`k,ε . Then µ(X \ Kε) 6 ε .

We claim that Kε is compact. Let (yn) ⊂ Kε be a sequence, and set A0 = N . Induc-
tively, define infinite sets Ak+1 ⊂ Ak ⊂ A0 as follows. Since (yn)n∈Ak ⊂ Lk+1,`k+1,ε , there
exists some j such that d(xj, yn) 6 1

k+1 for infinitely many n ∈ Ak . Let Ak+1 be the set of
all these n ∈ Ak . Now define α(0) = 0 and

α(k + 1) = min
{

n ∈ Ak+1
∣∣ n > α(k)

}
.

Then (yα(k)) is a subsequence of (yn) , and d(yα(k), yα(`)) 6 1
2k for all ` > k > 1 . Hence,

(yα(k)) is a Cauchy sequence, and therefore converges to some y ∈ Kε .

Now, A =
⋃∞

k=1 K1/k is a σ-compact, such that µ(X \ K) = 0 . �

1.3 Measurable Functions

Definition 1.3.1. Let X be a set, Y a topological space, and µ a measure on X . A map
f : X → Y is said to be µ measurable if f−1(U) is µ measurable for each open U ⊂ Y .
Equivalently, f−1(B) is µ measurable for all Borel B ⊂ Y .

Set R̄ = [−∞, ∞] , and endow this set with the (compact, metrisable) topology gen-
erated by the set of all intervals [−∞, a[ and ]a, ∞] for −∞ < a < ∞ . Then a function
f : X → R̄ is µ measurable if and only if { f < a} is µ measurable for all a < ∞ . If in
particular, X is topological and µ is a Borel measure, then all l.s.c. and u.s.c. functions
are µ measurable. The characteristic function c · 1A where c ∈ R̄ \ 0 is µ measurable if
and only if A is.

A set A ⊂ X is said to be σ-finite for µ if it is measurable and the countable union of
Ak , µ(Ak) < ∞ . Similarly, f : X → R̄ is said to be σ-finite for µ if it is µ measurable and
{ f 6= 0} is σ-finite.

Proposition 1.3.2.

(i). Let f , g : X → R be µ measurable. Then so are f + g , f g , f± , | f | , min( f , g) ,
max( f , g) . If g 6= 0 on X , then so is f /g .

(ii). Let fk : X → R̄ be µ measurable. Then so are infk fk , supk fk , lim supk fk ,
lim infk fk .

Proof of (i). Note

{ f + g < a} =
⋃

b,c∈Q , b+c<a

{ f < b} ∩ {g < c} ,
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so f + g is µ measurable. Because { f 2 < a} = ∅ if a 6 0 and { f 2 < a} = {−b < f < b}
where b2 = a otherwise, f 2 is µ measurable. Since 2 f g = ( f + g)2 − ( f 2 + g2) , f g is µ

measurable, too.

Let g 6= 0 everywhere. Then

{1/g < a} =

{1/a < g < 0} a < 0 ,

{g < 0} ∪ {1/a < g} a = 0 ,

where 1/0 = ∞ . Thus 1/g is µ measurable, and the same follows for f /g .

Now, f + = 1 f>0 · f and f− = (− f )+ are µ measurable. Since

| f | = f + + f− , max( f , g) = ( f − g)+ + g , and min( f , g) = −max(− f ,−g) ,

the item (i) is proven.

Proof of (ii). First, {infk fk < a} =
⋃∞

k=0{ fk < a} . Then, supk fk = − inf(− fk) , and
moreover, lim infk fk = supk infj>k f j , and lim supk = − lim infk(− fk) . �

The following lemma will be useful later. It exhibits a positive function as the upper
envelope of sums of characteristic functions which are µ measurable if f is. This is
called a pyramidal approximation.

Lemma 1.3.3. Let f : X → [0, ∞] . Then f = supk fk where

fk =
1
2k ·

k·2k

∑
j=1

1{ f >j/2k} for all k ∈ N.

Proof. By definition, fk < f . On the other hand, for k > f (x) ,

2k ·
(

f (x)− fk(x)
)

= 2k · f (x)− b2k · f (x)c+ 1 6 2 ,

so 0 6 f (x)− fk(x) 6 1
2k−1 . �

1.4 Lusin’s and Egorov’s Theorems

Theorem (Lusin) 1.4.1. Let X , Y be metric with X σ-compact and Y separable, and let µ

be a Borel regular measure on X . Let A ⊂ X be µ measurable and µ(A) < ∞ . For any
ε > 0 , there exists a compact K ⊂ A such that µ(A \ K) 6 ε and f

∣∣ K is continuous.

Proof. For any k > 1 , let (Bk`)`∈N ⊂ B(Y) be a Borel partition of Y so that diam Bk` 6 1
k .

Let Ak` = A ∩ f−1(Bk`) . Then (Ak`)`∈N ⊂ M(µ) is a µ measurable partition of A .

Consider ν = µ A , a Radon measure by proposition 1.1.7. Thus X is the countable
union of ν-finite open sets. Theorem 1.1.9 gives compact subsets Kk` ⊂ Ak` satisfying
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ν(Ak` \ Kk`) 6 ε
2k+`+1 . Thus

limn µ

(
A \

n⋃
`=0

Kk`

)
= ν

(
A \

∞⋃
`=0

Kk`

)
6 ν

( ∞⋃
`=0

Ak` \ Kk`

)
6

∞

∑
`=0

ν(Ak` \ Kk`) 6
ε

2k .

Hence, for some nk ∈ N and Ck =
⋃nk

`=0 Kk` , we have µ(A \ Ck) 6 ε
2k .

Define gk : Ck → Y by gk = bk` on Kk` , ` = 0 . . . , nk , where bk` ∈ Bk` are chosen
arbitrarily. Since diam Bk` 6 1

k , we find d( f , gk) 6 1
k on Ck . Let K =

⋂∞
k=1 Ck . Then

µ(A \ K) 6
∞

∑
k=1

µ(A \ Ck) 6 ε .

Moreover, limk gk = f uniformly on K and the gk are locally constant, so f
∣∣ K is contin-

uous. �

Corollary 1.4.2. Let X be metric and σ-compact, µ a Borel regular measure on X , E lo-
cally convex and metrisable, and f : X → E be µ measurable. If A ∈ M(µ) , µ(A) < ∞ ,
and ε > 0 , then there is a continuous function g : X → E such that (µ A){ f 6= g} 6 ε .

Proof. By theorem 1.4.1, there exists a compact K ⊂ A such that µ(A \ K) 6 ε and
f

∣∣ K continuous. By the Dugundji-Tietze theorem [Dug51, th. 4.1], there is a continuous
extension g : X → E of f

∣∣ K . Since { f 6= g} ⊂ X \ K , the assertion follows. �

Remark 1.4.3. An equivalent formulation of the conditions on E in the above corollary
is the following: E is locally convex, Hausdorff and first countable (i.e. 0 has a countable
neighbourhood basis). The reader may be more familiar with the classical Tietze exten-
sion theorem, where E = R . Of course, the classical Tietze theorem gives the above
corollary for E = Rn with its Hausdorff vector space topology.

Theorem (Egorov) 1.4.4. Let X be a set, Y be metric, µ a measure on X , and f , fk : X → Y
be µ measurable. If A ∈ M(µ) , µ(A) < ∞ , and f = limk fk pointwise µ a.e. on A , then
for all ε > 0 there exists µ measurable B ⊂ A such that µ(A \ B) 6 ε and f = limk fk

uniformly on B .

Proof. Let Ak` =
⋃∞

j=k{d( fk, f ) > 1
`} . Then Ak+1,` ⊂ Ak` , and A ∩⋂∞

k=0 Ak` is µ negligi-
ble for all ` > 1 . Thus, limk µ(A ∩ Ak`) = 0 .

Fix ε > 0 . For all ` , there exists n` > 1 such that µ(A ∩ An`,`) 6 ε
2` . Then the set

N =
⋃∞

`=1(A ∩ An`,`) is µ measurable and µ(N) 6 ε . If x ∈ B = A \ N , then for all
k > n` , we have d

(
fk(x), f (x)

)
6 1

` , so f = limk fk uniformly on B . �

Corollary 1.4.5. Let X be a set, Y be metric, µ a measure on X , and f , fk : X → Y be µ

measurable. Let A ∈ M(µ) be σ-finite and f = limj f j pointwise µ a.e. on A . Then there
exist M(µ) 3 Bk ⊂ A such that µ

(
A \⋃∞

k=0 Bk
)

= 0 and f = limj f j uniformly on Bk .

Proof. Let A =
⋃∞

k=0 Ak where Ak ∈ M(µ) , µ(Ak) < ∞ . We may assume Ak ⊂ Ak+1 .
There exist µ measurable Bk ⊂ Ak such that µ(Ak \ Bk) 6 1

2k+1 and f = limk fk uniformly
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on Bk . We may assume Bk ⊂ Bk+1 . Thus for all ` ∈ N ,

µ
(

A \
⋃∞

k=0
Bk

)
= µ

(⋃∞

k=`
Ak \

⋃∞

k=`
Bk

)
6 µ

(⋃∞

k=`
Ak \ Bk

)
6

1
2`

.

We conclude that µ
(

A \⋃∞
k=0 Bk

)
= 0 . �

1.5 Integrals and Limit Theorems

Definition 1.5.1. Let X be a set. A function f : X → R̄ is called simple if its image is
countable. (This means f = ∑∞

k=0 ak1Ak where the Ak are mutually disjoint.) Note that
summation on R̄ is well-defined, associative and commutative for all pairs x, y ∈ R̄ such
that {x, y} 6= {±∞} . Thus for a measure µ on X we may define∫

f dµ = ∑
06y6∞

y · µ
(

g−1(y)
)

for all simple, µ measurable f : X → [0, ∞]

and ∫
f dµ =

∫
f + dµ−

∫
f− µ = ∑

−∞6y6∞
y · µ

(
f−1(y)

)
for all simple, µ measurable f : X → R̄ for which

∫
f + dµ < ∞ or

∫
f− dµ < ∞ .3 In the

latter case, f is called a µ integrable simple function. (Not to be confused with the notion
of µ-summable function, to be defined below.)

Definition 1.5.2. Let f : X → R̄ be arbitrary. Define the upper and lower integral of f by∫ ∗
f dµ = inf f6g µ a.e. , g µ-integrable simple

∫
g dµ and

∫
∗

f dµ = −
∫ ∗

(− f ) dµ .

If f is µ measurable and
∫ ∗ f dµ =

∫
∗ f dµ , then f is called µ integrable. In this case, the

integral of f is, per definition,∫
f dµ :=

∫ ∗
f dµ =

∫
∗

f dµ .

If A ⊂ X is µ measurable, define
∫

A f dµ =
∫

f d(µ A) whenever f is µ A-
integrable.

If f is µ integrable and
∫
| f | dµ < ∞ , we say that f is µ summable (see below). If

X is topological, then f is said to be locally µ summable if f µ measurable and µ U
summable for U in a neighbourhood basis of X . E.g., for X metric, on all balls, or for
X locally compact, for all compacts. A locally µ summable function is always µ K-
summable for each compact K ⊂ X .

The terminology integrable/summable is Federer’s. An alternative nomenclature
which often appears in the literature is quasi-integrable/integrable.

3For A ⊂ R̄ , ∑a∈A a := Σ+ − Σ− if either of Σ± is finite. Here, Σ± = supF⊂A , #F<∞ ∑a∈F a± .
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Remark 1.5.3. Note that any µ measurable f > 0 (µ a.e.) is µ integrable.
Indeed, if µ{ f = ∞} > 0 , then∫ ∗

f dµ >
∫
∗

f dµ >
∫

∞ · 1{ f =∞} dµ = ∞ · µ{ f = ∞} = ∞ .

Otherwise, let 1 < t < ∞ , and define

g =
∞

∑
k=0

tn · 1{tn6 f <tn+1} .

Then g 6 f 6 t · g , so
∫ ∗ f dµ 6 t ·

∫
g dµ 6 t ·

∫
∗ f dµ . Since t was arbitrary, the

assertion follows.

Definition 1.5.4. Let X be topological. A set function ν : P(X) → R̄ is a signed measure if
there is a Radon measure µ and a locally µ summable function f : X → R̄ so that

ν(K) =
∫

K
f dµ for all compacts K ⊂ X .

In this case, we write ν = µ f . Note that µ A = µ 1A if X is σ-compact and 1A is
locally µ-summable.

Theorem (Fatou’s lemma) 1.5.5. Let X be a set, µ a measure on X , and fk : X → [0, ∞]
be µ-measurable. Then ∫

lim infk fk dµ 6 lim infk

∫
fk dµ .

Proof. Let g 6 lim infk fk , g = ∑∞
k=0 ak1Ak with Ak ∈ M(µ) , be a µ-integrable simple

function. We may assume Ak to be disjoint, and thus ak > 0 for all k ∈ N . Let 0 < t < 1 .
Then

Ak =
⋃∞

`=0
Bk` where Bk` = Ak ∩

⋂∞

j=`
{ f j > tak} .

Indeed, if x ∈ Ak , then ak = g(x) 6 sup` infj>` f j(x) , so for all ε > 0 there exists ` ∈ N

such that ak − ε < supj>` f j(x) . If we choose 0 < ε 6 (1− t) · ak , then f j(x) > tak for all
j > ` . Since Ak ⊃ Bk,`+1 ⊃ Bk,` , we have

∫
f` dµ >

∞

∑
k=0

∫
Ak

f` dµ >
∞

∑
k=0

∫
Bk`

f` dµ >
∞

∑
k=0

takµ(Bk`) .

Therefore,

lim inf`
∫

f` dµ > sup`

∞

∑
k=0

takµ(Bk`) = t ·
∞

∑
k=0

akµ(Ak) = t ·
∫

g dµ .

Since t and g were arbitrary, the assertion follows. �

Corollary 1.5.6. Let 0 6 fk 6 fk+1 µ a.e. Then
∫

supk fk dµ = supk

∫
fk dµ .
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Proof. Clearly, supk

∫
fk dµ 6

∫
supk fk dµ . The converse follows from Fatou’s lemma,

because lim infk = supk for increasing sequences. �

Theorem (Lebesgue’s dominated convergence) 1.5.7. Let f , fk : X → R̄ be µ measur-
able. Suppose | fk| 6 g where g is µ summable (i.e. µ measurable and

∫
g dµ < ∞), and

f = limk fk µ a.e. Then f is µ summable and

limk

∫
| f − fk| dµ = 0 .

Proof. Clearly, | f − fk| = lim`| f` − fk| 6 2g . By theorem 1.5.5,∫
2g dµ =

∫
lim infk

(
2g− | f − fk|

)
dµ

6 lim infk

∫ (
2g− | f − fk|

)
dµ =

∫
2g dµ− lim supk

∫
| f − fk| dµ ,

so
0 6 lim inf

k

∫
| f − fk| dµ 6 lim sup

k

∫
| f − fk| dµ 6 0 .

Since | f | 6 g , f is µ summable. �

Theorem (Pratt) 1.5.8. Let g, gk : X → [0, ∞] be µ summable, f , fk : X → R̄ be µ measur-
able,

| fk| 6 gk , f = limk fk and g = limk gk µ a.e.

If limk
∫

gk dµ =
∫

g dµ , then f is µ summable, and

limk

∫
| f − fk| dµ = 0 .

Proof. The proof is similar as for Lebesgue’s theorem: Indeed,∫
2g dµ =

∫
lim infk

(
2gk − | f − fk|

)
dµ

6 lim infk

∫ (
2gk − | f − fk|

)
dµ 6

∫
2g dµ− lim supk

∫
| f − fk| dµ

by theorem 1.5.5, and again the claim follows. �

Theorem (Riesz-Fischer) 1.5.9. Let f , fk : X → R̄ be µ summable, limk
∫
| f − fk| dµ = 0 .

Then there exists a subsequence α such that f = limk fα(k) µ a.e.

Proof. Let α be a subsequence such that
∫
| f − fα(k)| dµ 6 1

2k+1 . Let ε > 0 . Then
lim supk| f (x)− fα(k)| > ε implies that sup`>k| f (x)− fα(`)(x)| > ε for all k , so for all
k , there exists ` > k such that | f (x)− fα(`)(x)| > ε . Hence, for all k ∈ N ,

µ
[
lim supj| f − fα(j)| > ε

]
6

∞

∑
`=k

µ
[
| f − fα(`)| > ε

]
6

1
ε
·

∞

∑
`=k

∫
| f − fα(`)| dµ 6

1
2k · ε

.
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Thus, µ{lim supk| f − fα(k)| > 0} = limε→0+ µ{lim supk| f − fα(k)| > ε} = 0 . �

1.6 Product Measures

1.6.1. Let µ and ν be measures on the sets X and Y , respectively. Define a set function
α⊗ β : P(X ×Y) → [0, ∞] by

(µ⊗ ν)(C) = inf
{

µ(Aj)ν(Bj)
∣∣∣ C ⊂

⋃∞

j=0
Aj × Bj , Aj ∈ M(µ) , Bj ∈ M(ν)

}
.

Here, we let ∞ · 0 = 0 ·∞ = 0 . It is easy to see that µ⊗ ν is a measure on X ×Y , and

(µ⊗ ν)(A× B) 6 µ(A) · ν(B) for all A ⊂ X , B ⊂ Y .

For C ⊂ X×Y and (x, y) ∈ X×Y , let Cx = pr2((x×Y)∩C) and Cy = pr1((X× y)∩C) .

Theorem (Fubini) 1.6.2.

(i). µ⊗ ν is a regular measure on X ×Y .

(ii). The set A × B is µ ⊗ ν measurable whenever A and B are µ and ν measurable,
respectively, and in this case, (µ⊗ ν)(A× B) = µ(A) · µ(B) .

(iii). If C ⊂ X × Y is σ-finite for µ ⊗ ν , then Cx is ν measurable for µ a.e. x , Cy is µ

measurable for ν a.e. y , x 7→ ν(Cx) is µ integrable, y 7→ µ(Cy) is ν integrable, and

(µ⊗ ν)(C) =
∫

µ(Cy) dν(y) =
∫

ν(Cx) dµ(x) .

(iv). If f : X×Y → R̄ is µ⊗ ν-measurable and σ-finite for µ⊗ ν , then
∫

f (xy, y) dν(y)
is µ integrable,

∫
f (x, xy) dµ(x) is ν integrable, and∫

f d(µ⊗ ν) =
∫∫

f (x, y) dµ(x) dν(y) =
∫∫

f (x, y) dν(y) dµ(x) .

Proof. Let F ⊂ P(X ×Y) consist of those C for which x 7→ 1C(x, y) is µ integrable for
all y ∈ Y , and y 7→

∫
1C(x, y) dµ(x) is ν integrable. For C ∈ F , write

$(C) =
∫∫

1C(x, y) dµ(x) dν(y) ∈ R̄ .

From corollary 1.5.6, we find that for any disjoint family (Cj) ⊂ F ,
⋂∞

j=0 Cj ∈ F , and
$(

⋂∞
j=0 Cj) = ∑∞

j=0 $(Cj) . From Lebesgue’s theorem 1.5.7, for any increasing (Cj) ⊂ F
such that $(C0) < ∞ ,

⋃∞
j=0 Cj ∈ F , and limj $(Cj) = $(

⋃∞
j=0 Cj) .

Further, define

P0 =
{

A× B
∣∣ (A, B) ∈ M(µ)×M(ν)

}
, P1 =

{⋃
G

∣∣ G ⊂ P0 countable
}

,
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P2 =
{⋂

G
∣∣∣ ∅ 6= G ⊂ P1 countable

}
.

For A× B ∈ P0 , 1A×B(x, y) = 1A(x) · 1B(y) , so A× B ∈ F with $(A× B) = µ(A) · ν(B) .
In particular, P0 ⊂ F . If C× D ∈ P0 , then

(A× B) \ (C× D) = (A \ C)× B ∪ (A ∩ C)× (B \ D) ,

so any element of P1 is the union of a disjoint countable family in P0 . Thus, P1 ⊂ F .
Since P1 is closed under finite intersections, any member of P2 is the intersection of a
decreasing sequence from P1 .

We claim that for all C ⊂ X ×Y , there exists C ⊂ D ∈ P2 , so that

(µ⊗ ν)(C) = inf{$(D)|C ⊂ D ∈ P1} , and (µ⊗ ν)(C) = (µ⊗ ν)(D) = $(D) .

To that end, let Aj × Bj ∈ P0 , C ⊂ D =
⋃∞

j=0 Aj × Bj . Then $(D) 6 ∑∞
j=0 µ(Aj)ν(Bj)

with equality if the Aj × Bj are disjoint, and

(µ⊗ ν)(C) 6
∞

∑
j=0

(µ⊗ ν)(Aj × Bj) 6
∞

∑
j=0

µ(Aj)ν(Bj) .

This establishes the first part of the claim, seeing that (µ ⊗ ν)(C) is defined as the infi-
mum of the latter sums.

To prove the second part of the claim, we first establish (ii). If A× B ∈ P0 , then

(µ⊗ ν)(A× B) 6 µ(A)ν(B) = $(A× B) 6 $(C) for all A× B ⊂ C ∈ P1 .

By the first part of the claim, (µ⊗ ν)(A× B) = µ(A)ν(B) . For the µ⊗ ν measurability
of E = A× B , let C ⊂ X ×Y . If C ⊂ D ∈ P1 , we have D \ E, D ∩ E ∈ P1 , and

(µ⊗ ν)(C \ E) + (µ⊗ ν)(C ∩ E) 6 $(D \ E) + $(D ∩ E) = $(D) ,

so by the first part of the claim, the measurability of A× B follows. Since µ⊗ ν = $ on
P0 , this implies µ⊗ ν = $ on P1 , by proposition 1.1.3 (ii).

W.l.o.g., (µ ⊗ ν)(C) < ∞ , since otherwise (µ ⊗ ν)(C) = ∞ = $(X × Y) , and we
observe X × Y ∈ P1 ⊂ P2 . According the first part of the claim, to k > 1 we can
associate C ⊂ Cj ∈ P1 such that $(Cj) 6 (µ⊗ ν)(C) + 1

k . Then D =
⋂∞

k=1 Ck ∈ P2 , and
(µ⊗ ν)(C) = $(D) . Since any member of P2 is measurable, we find $(D) = (µ⊗ ν)(D) ,
by proposition 1.1.3 (iv). This completes the proof of the claim, and also of (i), since any
C ⊂ X × Y is contained in an element of P2 of equal measure, and by (ii), these are
measurable.

As to (iii), if (µ⊗ ν)(C) = 0 , then there exists C ⊂ D ∈ P2 such that $(D) = 0 , so
$(C) = 0 . If (µ ⊗ ν)(C) < ∞ and C is µ ⊗ ν measurable, then there is C ⊂ D ∈ P2
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so that (µ ⊗ ν)(C) = (µ ⊗ ν)(D) = $(D) . Thus, (µ ⊗ ν)(D \ C) = 0 , in particular,
$(D \ C) = 0 . This implies that

µ(Cy) = µ(Dy) for ν a.e. y ∈ Y ,

in particular, this quantity is ν integrable as function of y . Furthermore,

$(C) = $(D) = (µ⊗ ν)(C) =
∫

1C d(µ⊗ ν) .

The remainder of (iii) for the case of finite measure follows by symmetry. The case of
σ-finite measure is a matter of applying corollary 1.5.6.

For the case of simple functions, (iv) follows immediately from (iii). If f > 0 , the
assertion follows from lemma 1.3.3 and corollary 1.5.6. The general case follows by
considering f = f + − f− . �

1.6.3. The construction of the product measure allows us to define the (outer) Lebesgue
measure in arbitrary finite dimensions. The one-dimensional Lebesgue measure L1 is
given by

L1(A) = inf
{ ∞

∑
j=0

diam Aj

∣∣∣∣ A ⊂
∞⋃

j=0

Aj , Aj ⊂ R

}
for all A ⊂ R ,

where the diameter is taken with respect to the Euclidean distance and diam ∅ = 0 .
The n-dimensional Lebesgue measure is defined inductively by Ln = Ln−1 ⊗L1 . Then
Lk ⊗L` = Lk+` .

Note L1([a, b]) = b− a for −∞ 6 a 6 b 6 ∞ . Indeed, suffices to consider a, b finite;
then diam[a, b] = b − a . Let aj = inf Aj , bj = supj Aj , where [a, b] ⊂ ⋃∞

j=0 Aj , and we
may assume Aj ∩ [a, b] 6= ∅ and −∞ < aj 6 bj < ∞ . Then ai 6 a for some i and bj > b
for some j . Moreover, bi > a and aj 6 b , so there exist j0 = i , . . . , jm = j , such that
bjk > ajk+1 for all k . Then

∞

∑
k=0

diam(Ak) =
∞

∑
k=0

bk − ak >
m

∑
k=0

bjk − ajk > bj − ai > b− a .

Fubini’s theorem 1.6.2 implies Ln(
∏n

j=1[aj, bj]
)

= ∏n
j=1 bj − aj for all −∞ 6 aj 6 bj 6 ∞ .

By Carathéodory’s criterion, it follows easily that Ln is a Borel measure. By its σ-
finiteness, the Borel regularity follows form the Borel regularity on cubes.

1.7 Covering Theorems of Vitali Type

Since the subject matter of the following two subsections is rather technical in nature, a
few words on its significance are in order. In the problems we shall be studying in the
sequel, passages from local to global data, and vice versa, will often be of vital impor-
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tance. The technical device commonly used for such arguments will be the following:
To estimate µ(A) for some set A , cover A by smaller sets in some collection F . Then
choose countable subfamilies G ⊂ F almost covering A , where the members of G have
some prescribed diameter. Conversely, if the members of G belong to some small neigh-
bourhood of A and are disjoint or posess a finite bound on the number of their mutual
intersections, their measure may provide a lower bound for µ(A) .

The covering theorems we shall prove concern the existence of such subfamilies.
Roughly, the theorems we shall prove fall into two categories: Those of Vitali type apply
to quite general families F , but provide subfamilies G such that certain enlargements of
elements of G (almost) cover A . The Besicovich type covering theorems, on the other
hand, apply to less general families F but provide covers by the original subfamilies G .

1.7.1. In what follows, let (X, d) be a metric space, and µ a Borel measure.

Definition 1.7.2. Let F ⊂ P(X) . For each Y ⊂ X , define F
∣∣ Y = {F ∈ F|F ⊂ Y} .

We say that F is fine at x ∈ X if infx∈F∈F diam(F) = 0 , and fine if it is fine at every
point. If A ⊂ X , we say that F µ almost covers A if A \⋃F is µ negligible. The family F
is µ adequate for A if for every open V ⊂ X , there exists a countable disjoint G ⊂ F such
that

⋃ G ⊂ V and G µ almost covers V ∩ A .

Theorem 1.7.3. Let the family F consist of closed sets, A =
⋃∞

j=0 Aj be σ-finite, and
σ : {Aj|j ∈ N} → ]0, 1[ . Then F is µ adequate for A if the following holds: For every
open V ⊂ X , there exists a countable disjoint G ⊂ F such that

⋃ G ⊂ V and

µ
(
(V ∩ Aj) \

⋃
G

)
6 σ(Aj) · µ(V ∩ Aj) for all j ∈ N .

Proof. Since A is σ-finite, we may assume that the µ(Aj) < ∞ are bounded. Let (Bj) be
an enumeration of {Aj|j ∈ N} such that for all j , Bi = Aj for infinitely many i .

Fix an open V ⊂ X , We claim that for all j ∈ N , there exist open Vj ⊂ X and finite
disjoint Gj ⊂ F such that

⋃ Gj ⊂ Vj and

µ
(
(Vj ∩ Bj) \

⋃
Gj

)
6 σ(Bj)1/2 · µ(Vj ∩ Bj) for all j ∈ N .

To that end, we set V0 = V and G0 = ∅ . Moreover, set Vj = Vj−1 \
⋃ Gj−1 in the jth step.

There exists a countable disjoint H ⊂ F such that
⋃H ⊂ Vj , and

µ
(
(Vj ∩ Bj) \

⋃
H

)
6 σ(Bj) · µ(Vj ∩ Bj) .

Since σ(Bj)1/2 > σ(Bj) , we may choose Gj ⊂ H to be an appropriate finite subfamily.
(Note that the members of H are µ measurable since they are closed and µ is Borel.) This
proves the claim.
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Now, let G =
⋃∞

j=0 Gj ⊂ F . Then G is countable and disjoint,

⋃
G ⊂

∞⋃
j=0

Vj ⊂ V and V \
⋃
G =

∞⋂
j=0

Vj \
⋃
Gj =

∞⋂
j=1

Vj .

If k is fixed, then Ak = Bj for infinitely many j , hence

µ(Vj+1 ∩ Ak) = µ
(
(Ak ∩Vj) \

⋃
Gj

)
6 σ(Ak)1/2 · µ(Vj ∩ Ak)

for infinitely many j ∈ N . Since Vj+1 ⊂ Vj and µ(Ak) < ∞ , we find

µ
(
(V ∩ Ak) \

⋃
G

)
= µ

(⋂∞

j=1
Vj ∩ Ak

)
= limj µ(Vj ∩ Ak) = 0 .

Hence, (V ∩ A) \⋃ G is µ negligible as the countable union of µ negligible sets. Since V
was arbitrary, F is µ adequate for A . �

Corollary 1.7.4. Let F consist of closed sets, A =
⋃∞

j=0 Aj be σ-finite. If F is µ adequate
for each Aj , then it is µ adequate for A .

Definition 1.7.5. Let F ⊂ P(X) , δ : F → [0, R] , and 1 < τ < ∞ . For each F ∈ F ,
define the (δ, τ)-enlargement of F as

F̂ = F̂δ,τ,F =
⋃{

G ∈ F
∣∣ G ∩ F , δ(G) 6 τδ(F)

}
.

A common choice for δ is δ(F) = diam(F) . Then we have B̂(x, r) 6 B
(
x, (1 + 2τ)r

)
and

(1 + 2τ)r = 5r for τ = 2 . For this reason, the following theorem is sometimes called the
5r covering theorem.

Theorem 1.7.6. Let F ⊂ P(X) , δ : F →]0, R] , and 1 < τ < ∞ . Then F contains a
disjoint subfamily G such that

⋃F ⊂ ⋃{
Ĝ

∣∣ G ∈ G
}

.

We shall use the following the set theory lemma (repeatedly).

Lemma 1.7.7. Let A be set, P a reflexive predicate defined on A× A , $ : A →]0, R] , and
1 < τ < ∞ . There exists a subset B ⊂ A so that

P(a, b) or P(b, a) for all a, b ∈ B (1)

and for all a ∈ A \ B ,

¬P(a, b) and τ$(b) > $(a) for some b ∈ B . (2)

Proof. Let Ω ⊂ P(A) consist of those B ⊂ A such that (1) is satisfied, and for all a ∈ A ,
either P(a, b) for all b ∈ B , or (2) is satisfied. The set Ω is ordered by inclusion. Observe
∅ ∈ Ω . Let C ⊂ Ω be a maximal chain, by the Hausdorff maximality principle. Let
B =

⋃ C .



22 1. Basic Measure Theory

Since C is a chain, any two a, b ∈ B belong to some C ∈ C , thus P(a, b) , and condition
(1) is valid. Clearly, for all a ∈ A \ B , either (2) is satisfied, or P(a, b) for all b ∈ B . Hence
B ∈ Ω , and thus B is the largest element of C .

Seeking a contradiction, assume that for K = {a′ ∈ A|P(a′, b) for all b ∈ B} , there
exists a ∈ K \ B . Then a may be chosen such that τ · $(a) > sup $(K) . Let B′ = {a} ∪ B .
Then P(b, c) or P(c, b) for all b, c ∈ B . Moreover, P(a, a) obtains by reflexivity. For
b ∈ B , we have P(a, b) by assumption, so (1) is satisfied for B′ . If a′ ∈ A \ B′ , then either
there exists b ∈ B such that ¬P(a, b) and τ$(b) > $(a′) , or a′ ∈ K . In the latter case,
τ$(a) > $(a′) , so in any case, condition (2) is satisfied for B′ . This proves that B′ ∈ Ω ,
contrary to the maximality of B . Thus, B satisfies (2) for all a ∈ A \ B . �

Proof of theorem 1.7.6. We may employ lemma 1.7.7 with A = F , $ = δ , and the predi-
cate P(F, G) ≡ F 6= G ⇒ F ∩ G = ∅ . �

Corollary 1.7.8. Let F be a closed fine cover of A ⊂ X , δ : F → [0, R] , and 1 < τ < ∞ .
Then there exists a disjoint G ⊂ F such that

⋃F ⊂ ⋃{Ĝ|G ∈ G} , and for any finite
H ⊂ G ,

A \
⋃
H ⊂

⋃{
Ĝ

∣∣ G ∈ G \H
}

.

Proof. Let G ⊂ F be constructed as in theorem 1.7.6. The set H =
⋃H is closed, so for

any x ∈ A \ H , there exists ε > 0 such that B(x, ε) ∩ H = ∅ . Since F is fine, there exists
F ∈ F with x ∈ F ⊂ B(x, ε) . On the other hand, by the construction of G , there exists
G ∈ G such that F ⊂ Ĝ and F ∩ G 6= ∅ . But F ∩ H = ∅ , so we see that G 6∈ H . �

Theorem (Vitali-Federer) 1.7.9. Let µ be finite on bounded subsets, F a closed fine cover
of A , δ : F →]0, R] , and 1 < τ, λ < ∞ . If µ satisfies the doubling condition µ(F̂) < λµ(F)
for all F ∈ F , then F is µ adequate.

Proof. In particular, X is σ-finite for µ . In view of corollary 1.7.4, we may assume that
A is bounded. By the same token, it suffices to consider bounded open V ⊂ X . The
family F

∣∣ V is a closed fine cover of V ∩ A . Apply corollary 1.7.8 to obtain a disjoint
G ⊂ F

∣∣ V such that
(V ∩ A) \

⋃
H ⊂

⋃{
Ĝ

∣∣ G ∈ G \H
}

for all finite H ⊂ G . Because 0 6 µ(Ĝ) < λ · µ(G) for all G ∈ G , the set G is countable.
Otherwise, we would have µ(G) > 1

k for some k > 1 and G ∈ G ′ where G ′ is some
infinite countable subset set of G , and this would imply µ(V) > ∑G∈G ′ µ(G) = ∞ ,
contradiction. Hence,

∑
G∈G

µ(Ĝ) 6 λ · ∑
G∈G

µ(G) 6 λµ(V) < ∞ .

Moreover, for all ε , there exists a finite H ⊂ G such that

ε > ∑
G∈G\H

µ(Ĝ) > µ
(
(V ∩ A) \

⋃
H

)
> µ

(
(V ∩ A) \

⋃
G

)
.
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Therefore, the right hand side vanishes, which proves the theorem. �

1.7.10. Vitali’s classical theorem is obtained from theorem 1.7.9 as follows: Let µ be finite
on bounded subsets, F a fine family of closed balls, δ(B(x, r)) = diam(B(x, r)) = 2r .
Whenever µ satisfies the diametric regularity condition

µ
(

B(a, (1 + 2τ)r)
)

< λ · µ
(

B(a, r)
)

for all B(a, r) ∈ F ,

then F is µ adequate for any A ⊂ ⋃F . (The subfamily of F consisting all balls with
radius 6 R for some R > 0 is still fine.)

Sufficient (but not necessary) for the diametric regularity is the existence of positive
numbers 0 < α, β < ∞ such that

α 6
µ
(

B(a, s)
)

sn 6 β for all s = r, (1 + 2τ)r , B(a, r) ∈ F .

For instance, Ln(B(a, r)) = cn · rn where cn > 0 is some constant only depending on
n ∈ N , and Ln is n-dimensional Lebesgue measure on Rn .

We shall have to keep track of the centres of balls in the following, and in a general metric
space, these are not determined uniquely by the ball in consideration (e.g., consider a
discrete space X , #X > 2). Hence the following definition.

Definition 1.7.11. A covering relation is a subset of {(a, A)|a ∈ A ⊂ X} . For a covering
relation F and a subset Y ⊂ , let F (V) = pr2

(
(V ×P(X)) ∩ F

)
. Then F is said to be

fine, open, closed, Borel etc. if F (X) is fine, open, closed, Borel, etc.
Let V be a fine Borel covering relation of X . We say that V is a µ Vitali relation if for

each Y ⊂ X and each W ⊂ V which is fine on Y , W(Y) contains a countable disjoint
subfamily µ almost covering Y .

When x ∈ X , G ⊂ P(X) , f : G → R̄ , and V is a covering relation fine at x , define

lim supV→x f = lim supV3F→x f (F) = limε→0+ sup(x,F)∈F∩(X×G) , diam(F)6ε f (F) ,

and similarly for lim infV→x f . If lim supV→x f = lim infF→x f , we write limV→x f for
the common value.

Theorem 1.7.12. Let µ be finite on bounded subsets, V a bounded, closed, and fine cov-
ering relation, δ : V(X) →]0, ∞] , and 1 < τ < ∞ . Then V is a µ Vitali relation whenever

0 6 ν(x) = lim supV3F→x

[
δ(F) +

µ(F̂)
µ(F)

]
< ∞ for µ-a.e. x ∈ X .

Proof. Let Y ⊂ X and W ⊂ V be fine on Y . Let

Wn =
{

F ∈ W(Y)
∣∣∣∣ δ(F) +

µ(F̂)
µ(F)

< n
}

for all n ∈ N .
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Then Wn is fine on An = Y ∩ {ν < n} . Clearly, δ
∣∣ Wn < n , and µ(F̂) < n · µ(F) for all

F ∈ Wn , so by Vitali’s theorem 1.7.9, Wn is µ adequate for An . In particular, W(Y) is µ

adequate for An . Since (An) µ almost covers Y , corollary 1.7.4 implies that W(Y) is µ

adequate for Y , in particular, the assertion. �

1.8 Covering Theorems of Besicovich Type

1.8.1. In what follows, let (X, d) be metric and µ a Borel measure on X .

Definition 1.8.2. Let a, b, c ∈ X , b, c 6= a . The angle ∠(a, b, c) defined as

∠(a, b, c) = inf
{

d(x, c)
d(a, c)

∣∣∣∣ x ∈ X , d(a, x) = d(a, c) , d(a, x) + d(x, b) = d(a, b)
}

if b, c are ordered such that d(a, c) 6 d(a, b) , and by interchanging b and c , otherwise.
The condition d(a, x) + d(x, b) = d(a, b) means that x lies on a geodesic from a to b , so x
may be thought of a ‘normalisation’ of b (w.r.t. the origin a).

1.8.3. If X is some normed vector space, let a = 0 . Then x = ‖c‖
‖b‖ · b and

∠(0, b, c) =
∥∥∥ b
‖b‖ −

c
‖c‖

∥∥∥ .

Let X be finite-dimensional, so S(X) is compact. For each η > 0 , there exists a number
N such that S(X) is the union of N closed balls of radius η

2 .
If B ⊂ X \ 0 such that ∠(0, b, c) > η for all distinct b, c ∈ B , then each b

‖b‖ is contained
in at most one of these balls, whence #B 6 N . (Note that the condition ∠(0, b, c) > 0
implies that b, c are not collinear.) This consideration suggests the following definition.

Definition 1.8.4. Fix a triple (ξ, η, ζ) where 0 < ξ 6 ∞ , 0 < η 6 1
3 , and 1 6 ζ ∈ N . The

metric d of X is said to be directionally (ξ, η, ζ)-limited on A ⊂ X if the following is true:
Whenever a ∈ A , then any selection B ⊂ A ∩ B(a, ξ)◦ \ a such that ∠(a, b, c) > η for all
b, c ∈ B , we have #B 6 ζ .

1.8.5. This notion is clearly invariant under isometries. Since translations on a normed
vector space are isometries and act transitively, our above considerations show that in
particular, the metric induced by the norm on any finite dimensional normed vector
space X is directionally (∞, η, ζ)-limited on X for any η > 0 and ζ greater or equal the
Lebesgue η

2 -number of S(X) . The geodesic length metric of a Riemannian manifold
with suitable curvature bounds is also directionally (ξ, η, ζ)-limited for some choice of
parameters.

In a general metric space, the centre and the radius of a ball B = B(x, r) are usually
not determined uniquely by B (consider, e.g., any discrete space X , #X > 2 ). We shall
therefore consider subsets P ⊂ X×]0, ∞] of pairs of centres and radii before passing to
the corresponding families of balls.
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Definition 1.8.6. Let P ⊂ X×]0, ∞] and 1 < τ < ∞ . We say that P is τ controlled if and
only if for all (a, r), (b, s) ∈ P , (a, r) 6= (b, s) ,

d(a, b) > r >
s
τ

or d(a, b) > s >
r
τ

.

In particular, a 6= b and a 6∈ B(b, s) or b 6∈ B(a, r) , so B(a, r) 6= B(b, s) . Thus, for the
family of closed balls associated to a τ controlled set P , the centre of each B ∈ P is
uniquely determined.

Given (ξ, η, ζ) , a number τ shall be termed permissible if

1 < τ < 2− η and η +
τ

2− η
+ τ(τ − 1) < 1 .

Since η 6 1
3 , so η + 1

2−η 6 1
3 + 2

5 < 1 , any sufficiently small τ > 1 is permissible.

Lemma 1.8.7. Let 1 < τ < ∞ , 0 < µ < ∞ , and P ⊂ X×]0, µ] . Then there exists Q ⊂ P
such that d(a, b) > r + s for all distinct (a, r), (b, s) ∈ Q , and for all (a, r) ∈ P , there
exists (b, s) ∈ Q so that d(a, b) 6 r + s and s > r

τ .

Proof. We may employ lemma 1.7.7 with A = P , $ = pr2 , and

P
(
(a, r), (b, s)

)
≡ (a, r) 6= (b, s) ⇒ d(a, b) > r + s

to achieve the statement. �

Proposition 1.8.8. Suppose d is directionally (ξ, η, ζ)-limited on A ⊂ X , and τ is permis-
sible. Suppose that P ⊂ A×]0, ∞] is τ controlled. If there is (a, r) ∈ P such that

d(a, b) < ξ , d(a, b) 6 r + s for all (b, s) ∈ P such that s >
r
τ

,

then #P 6 2ζ + 1 .

Proof. Let k = 2−η
τ . Define

P1 =
{
(b, s) ∈ P

∣∣ 0 < d(a, b) 6 kr
}

and P2 =
{
(b, s) ∈ P

∣∣ d(a, b) > kr
}

.

We have already noted that since P is τ controlled, pr1 : Pj → Bj is a bijection onto
Bj = prj(Pj) . Thus #P− 1 = #B1 + #B2 . We shall prove that any two disctinct b, c ∈ Bj

satisfy ∠(a, b, c) > η , to conclude #Bj 6 ζ , whence the theorem.
Let (b, s), (c, t) ∈ Pj be distinct, d(a, b) > d(a, c) . Thus, choose any x ∈ X such that

d(a, x) = d(a, c) and d(a, x) + d(x, b) = d(a, b) . We have

d(x, c) > −d(x, b) + d(b, c) = d(a, c)− d(a, b) + d(b, c) .

Now, d(a, b) > r
τ , since r > r

τ and either d(a, b) > r or d(a, b) > s > r
τ , since P is τ

controlled.
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In case j = 1 , we have d(a, b) 6 kr . Moreover, d(b, c) > r
τ because either d(b, c) > s

or d(b, c) > t , and s, t > r
τ by assumption. Hence,

d(x, c) > d(a, c)− kr +
r
τ

= d(a, c)− r
τ
· (1− η) > d(a, c)− d(a, c) · (1− η) = d(a, c) · η ,

whence ∠(a, b, c) > η .
In case j = 2 , d(a, b) 6 r + s , and d(a, c) > min

(
kr, t

τ

)
. Moreover, d(b, c) > s or

d(b, c) > t > s
τ , so d(b, c)− s > 0 > (1− τ)t or

d(b, c)− s > t− s > t− τt = (1− τ)t .

In any case, d(b, c)− s > (1− τ)t , which implies

d(x, c) > d(a, c)− r + d(b, c)− s > d(a, c)(1− k−1)− t(τ − 1)

> d(a, c) ·
(

1− τ

2− η
− τ(τ − 1)

)
> d(a, c) · η ,

because τ is permissible. Hence, ∠(a, b, c) > η . This completes the proof. �

Proposition 1.8.9. Let d be directionally (ξ, η, ζ) limited, τ be permissible, and assume
the subset P ⊂ X×]0, µ[ , where 0 < µ < ξ

2 , is τ controlled. Then, for the covering
relation

BP =
{(

a, B(a, r)
) ∣∣ (a, r) ∈ P

}
,

BP(X) is the union of 2ζ + 1 disjoint subfamilies.

Proof. Let P0 = P , Q0 = ∅ , define Pj = Pj−1 \ Qj−1 , and let Qj ⊂ Pj be subset con-
structed in lemma 1.8.7. Since d(a, b) > r + s for all distinct (a, r), (b, s) ∈ Qj , the collec-
tion BQj(X) is disjoint. The proof shall be complete once we have shown that P2ζ+2 = ∅ .

To that end, seeking a contradiction, assume the existence of (a, r) ∈ P2ζ+2 ⊂ Pj .
Then there exist (bj, sj) ∈ Qj such that

d(a, bj) 6 r + sj < ξ and sj >
r
τ

.

The collection Q = {(a, r)} ∪ {(bj, sj)|j = 1, . . . , 2ζ + 1} has #Q = 2ζ + 2 . On the other
hand, it is τ controlled as a subset of P , and hence satisfies the assumptions of proposi-
tion 1.8.8, so #Q 6 2ζ + 1 , contradiction. �

Lemma 1.8.10. If 1 < τ < ∞ , 0 < µ < ∞ , and P ⊂ X×]0, µ[ , then there exists a τ

controlled Q ⊂ P such that pr1(P) ⊂ ⋃
BQ(X) .

Proof. Apply lemma 1.7.7 with A = P , $(a, r) = r ,

P
(
(a, r), (b, s)

)
≡ (a, r) 6= (b, s) ⇒ d(a, b) > s >

r
τ

.

Thus there exists R ⊂ P such that P
(
(a, r), (b, s)

)
or P

(
(b, s), (a, r)

)
for all (a, r), (b, s) ∈
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R , which means that R is τ controlled. Moreover, for all (a, r) ∈ P , there exists (b, s) ∈ R
such that d(a, b) 6 s or s 6 r

τ , and τs > r ; thus, d(a, b) 6 s , and this means a ∈ B(b, s) ∈
BR(X) . Hence the assertion. �

The essence of the following theorem is that under favourable conditions (i.e. if the met-
ric is directionally limited), there is a fixed number N such that ball covers with self-
intersection number bounded by 2N suffice to cover any subset.

Besicovich Covering Theorem 1.8.11. Let d be directionally (ξ, η, ζ) limited on A ⊂ X ,
and fix 0 < µ < ξ

2 . If F = BP(X) for some P ⊂ X×]0, µ[ , A ⊂ pr1(P) , i.e. F is a
collection of closed balls with radii less than µ , and such that any a ∈ A is the centre of
some ball in F , then A is contained in the union of 2ζ + 1 disjoint subfamilies of F .

Proof. First choose some permissible τ . There exists, by lemma 1.8.10, a τ controlled
subset Q ⊂ P , such that A ⊂ pr1(P) ⊂ ⋃

BQ(X) . By proposition 1.8.9, BQ(X) is the
union of 2ζ + 1 disjoint subfamilies. �

Corollary 1.8.12. Under the conditions of theorem 1.8.11, assume that µ is a Borel mea-
sure on X and A is separable and σ-finite for µ . Then F is µ adequate for A if it is fine.
Moreover, the σ-finiteness of A is immediate if µ is finite on bounded subsets.

Proof. We show that the hypothesis of theorem 1.7.3 is fulfilled for the choices Ak = A
and σ(A) = 2ζ

2ζ+1 .

Let V ⊂ X be open. Then any point of V ∩ A is the centre of some member of F
∣∣ V .

Therefore, theorem 1.8.11 gives the existence of disjoint subfamilies Hj ⊂ F
∣∣ V , j =

1, . . . , 2ζ + 1 , such that V ∩ A ⊂ ⋃2ζ+1
j=1

⋃Hj . Since A is separable, we may assume each
of the Hj be countable. In particular, if µ is finite on bounded subsets, the σ-finiteness
for µ of A follows. In any case,

⋃Hj is µ measurable.

Observe

µ(V ∩ A) 6
2ζ+1

∑
j=1

µ
(

A ∩
⋃
Hj

)
.

Hence, there exists 1 6 j 6 2ζ + 1 such that µ
(

A ∩⋃Hj
)

> 1
2ζ+1 · µ(V ∩ A) . By the

measurability of
⋃Hj , we infer

µ
(
(V ∩ A) \

⋃
Hj

)
= µ(V ∩ A)− µ

(
A \

⋃
Hj

)
6

2ζ

2ζ − 1
· µ(V ∩ A) ,

which is just the required relation. �

Corollary 1.8.13. Assume X =
⋃∞

k=0 Ak where d is directionally limited on Ak for all k . If
X is separable and σ-finite for µ (e.g. µ is finite on bounded subsets), then V = BX×]0,∞[ ,
the covering relation of all closed balls in X , is a µ Vitali relation.

Proof. Let W ⊂ V , Y ⊂ X , such that W is fine on Y . By corollary 1.8.12, W(Y) is µ

adequate for Y ∩ Ak for all k ∈ N . By corollary 1.7.4, W(Y) is µ adequate for Y . �
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1.9 Differentiation of Measures

In all that follows, let (X, d) be separable and the countable union of sets on which d is
directionally limited. Moreover, let µ, λ be Borel regular measures such that λ is finite
on bounded subsets. By corollary 1.8.13, V = BX×]0,∞[ is a Vitali relation for λ .

Definition 1.9.1. Let x ∈ X . Define r
0 = ∞ for all ∞ > r > 0 , 0

r = 0 for all r ∈ [0, ∞] , so
that a

b 6 c ⇔ a 6 bc for all a, b ∈ [0, ∞] , c ∈ [0, ∞[ ; let

D+
λ µ(x) = lim supε→0+

µ
(

B(x, ε)
)

λ
(

B(x, ε)
) and D−

λ µ(x) = lim infε→0+
µ
(

B(x, ε)
)

λ
(

B(x, ε)
) .

Whenever D±
λ µ(x) are equal, let dµ

dλ (x) = Dλµ(x) = D±
λ µ(x) . Whenever Dλµ exists, it

is called the Radon-Nikodým derivative of µ by λ , or the density of µ w.r.t. λ .

The aim of this subsection is to establish sufficient and necessary conditions for the ex-
istence of Dλµ , and to see how µ can be recovered by integrating Dλµ against λ .

Lemma 1.9.2. Let 0 < α < ∞ and A ⊂ X . Then

(i). A ⊂ {D−
λ µ 6 α} implies µ(A) 6 α · λ(A) , and

(ii). A ⊂ {D+
λ µ > α} implies µ(A) > α · λ(A) .

Proof. Since A is σ-finite for λ , we may assume λ(A) < ∞ . Let ε > 0 . By theorem 1.1.9
(i), there is an open U ⊃ A such that λ(U) 6 λ(A) + ε .

For the subfamily W ⊂ V of all (a, B) , B = B(a, r) ⊂ U , for which a ∈ A and
µ(B) 6 (α + ε)λ(B) , W is fine on A by assumption. Also by assumption, A is contained
in the union of balls of finite µ measure, so A is σ-finite for µ . By corollary 1.8.13, W
is µ Vitali relation on A . Thus, W(A) is µ adequate for A , and there exists a countable
disjoint G ⊂ W(A) µ almost covering A . Then,

µ(A) 6 ∑
B∈G

µ(B) 6 (α + ε) · ∑
B∈G

λ(B) 6 (α + ε) · λ(U) 6 (α + ε) ·
(
λ(A) + ε

)
.

Hence follows the assertion (i). The statement (ii) follows analogously. �

Proposition 1.9.3. The function Dλµ (defined as ∞ whenever Dλµ(x) does not exist) is λ

measurable. Moreover, Dλµ(x) exists and is finite for λ a.e. x ∈ X .

Proof. First, let us establish the λ measurability. To that end, fix 0 < a < b < ∞ . It
suffices to prove

λ(C) > λ
(
C ∩ {Dλµ < a}

)
+ λ

(
C ∩ {Dλµ > b}

)
for all C ⊂ X .

Indeed, this implies by theorem 1.1.10 that µ
(

Dλµ−1(R̄)
)

is a Borel measure.
Thus, let A ⊂ {Dλµ < a} and B ⊂ {Dλµ > b} be bounded. There exist Borel sets

A0, A1 ⊃ A such that λ(A) = λ(A0) and µ(A) = µ(A1) . Then A ⊂ A0 ∩ A1 ⊂ Aj ,
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j = 0, 1 , so λ(A) = λ(A′) and µ(A) = µ(A′) for the Borel set A′ = A0 ∩ A1 . Similarly,
there is a Borel B′ ⊂ B such that λ(B) = λ(B′) , µ(B) = µ(B′) .

Then
u(A′ ∩ B′) > µ(A ∩ B′) = µ(A′)− µ(A \ B′) > µ(A′ ∩ B′) ,

so µ(A′ ∩ B′) = µ(A ∩ B′) = µ(A′ ∩ B) , and equally for λ . By lemma 1.9.2,

aλ(A′ ∩ B′) = aλ(A ∩ B′) > µ(A ∩ B′) = µ(A′ ∩ B) > bλ(A′ ∩ B) = bλ(A′ ∩ B′) .

Since 0 < a < b < ∞ , we find λ(A′ ∩ B′) = 0 . Finally,

λ(A ∪ B) = λ
(
(A ∪ B) ∩ A′) + λ

(
(A ∪ B) ∩ B′

)
> λ(A) + λ(B) ,

and this proves the λ measurability of Dλµ .
To see that Dλµ exists λ a.e., consider the subfamily W ⊂ V consisting of the pairs

(a, B(a, r)) with B(a, r) λ negligible. Then the set of points x at which Dλµ(x) does not
exist or is infinite is the following union:

P ∪Q ∪
⋃

a,b∈Q , a<b

{D−
λ µ < a < b < D+

λ µ} .

Here, P is the set of points at whichW is fine, and Q the set of all x so that D+
λ µ(x) = ∞ .

Since W(P) is fine on P , it is λ adequate for P , and hence P is λ negligible.
For any bounded A ⊂ Q , lemma 1.9.2 gives cλ(A) 6 µ(A) < ∞ for all c > 0 , so

λ(A) = 0 , and Q is λ negligible. For any bounded A ⊂ {D−
λ < a < b < D+

λ µ} , the
lemma gives bλ(A) 6 µ(A) 6 aλ(A) , so λ(A) = 0 again. In conclusion, the set of all
points x for which Dλµ(x) does not exist or is infinite is a λ zero set. �

Definition 1.9.4. We say that µ is absolutely continuous w.r.t. λ , in symbols, µ � λ , if
λ(A) = 0 implies µ(A) = 0 for all A ⊂ X . If, on the other hand, there exists a Borel
B ⊂ X such that λ(X \ B) = µ(B) = 0 , then λ and µ are said to be mutually singular,
written µ ⊥ λ . Obviously, the relation � is a quasi-order (reflexive and transitive), and
⊥ is symmetric.

Theorem (Radon-Nikodým) 1.9.5. We have

µ(B) >
∫

B
Dλµ dλ for all B ∈ B(X) .

Moreover, we have equality if and only if µ � λ , if and only if D−
λ µ < ∞ µ a.e.

Proof. Let 1 < t < ∞ . Since Dλµ is λ a.e. existent and finite by proposition 1.9.3 and
corollary 1.5.6, we have

∫
B

Dλµ dλ =
∞

∑
k=−∞

∫
B∩{tk6Dλµ<tk+1}

Dλµ dλ 6
∞

∑
k=−∞

tk+1 · λ
(

B ∩ {tk 6 Dλµ < tk+1}
)
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6 t ·
∞

∑
k=−∞

µ
(

B ∩ {tk 6 Dλµ < tk+1}
)

6 t · µ(B) ,

which proves the inequality.
By proposition 1.9.3, Dλµ < ∞ λ-a.e. If µ � λ , the statement holds µ a.e. Hence,

µ(B) =
∞

∑
k=−∞

µ
(

B ∩ {tk 6 Dλµ < tk+1}
)

6
∞

∑
k=−∞

tk+1λ
(

B ∩ {tk 6 Dλµ < tk+1}
)

6 t ·
∞

∑
k=−∞

∫
{tk6Dλµ<tk+1}

Dλµ dλ 6 t ·
∫

B
Dλµ dλ .

If, conversely, the equality holds for all Borel B ⊂ X , let A ⊂ X be λ negligible. There
exists a Borel B ⊃ A such that λ(B) = λ(A) . Then µ(A) 6 µ(B) =

∫
B Dλµ dλ = 0 , so

we have µ � λ .
If µ � λ , note that D−

λ µ 6 Dλµ < ∞ λ a.e. implies finiteness µ a.e.
Finally, assume D−

µ λ < ∞ µ a.e. Let A ⊂ X , λ(A) = 0 . For any n ∈ N ,

µ
(

A ∩ {D−
λ µ 6 n}

)
6 nλ(A) = 0 ,

so µ(A) 6 ∑∞
n=0 µ(A ∩ {D−

λ µ 6 n}) = 0 . �

Corollary 1.9.6. If λ and µ coincide on all small closed balls, they are equal.

Proof. Indeed, if this is the case, then Dµλ(x) = 1 for all x ∈ X , so by theorem 1.9.5,

µ(B) =
∫

B
Dλµ dλ = λ(B) for all B ∈ B(X) .

Since µ and λ are Borel regular, this gives µ = λ by the device used in the proof of
measurability in proposition 1.9.3. �

Remark 1.9.7. The above statement is false in arbitrary metric spaces, even if they are
supposed to be compact. (Recall that we have assumed the condition that the metric is
σ-directionally limited.)

Lebesgue Decomposition Theorem 1.9.8. There exists a Borel regular measure ν 6 µ ,
finite on bounded subsets, and a λ measurable f : X → [0, ∞] , such that λ ⊥ ν and

µ(B) =
∫

B
f dλ + ν(B) for all B ∈ B(X) .

Moreover, ν = 0 if and only if µ � λ .

Proof. Let A = {D−
λ µ = ∞} , ν = µ A . By proposition 1.9.3, λ(A) = 0 , so that λ ⊥ ν .

Since µ (X \ A)(A) = 0 and D−
λ (µ (X \ A)) 6 D−

λ µ , we have D−
λ (µ (X \ A)) is

finite µ (X \ A)-a.e. By theorem 1.9.5, this implies µ− ν � λ . By the same token,

µ(B) =
(
µ (X \ A)

)
(B) + ν(B) =

∫
B

Dλ

(
µ (X \ A)

)
dλ + ν(B) for all B ∈ B(X) .
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Finally, µ � λ if and only if µ(A) = 0 , if and only if ν = µ A = 0 . �

Lebesgue-Besicovich Differentiation Theorem 1.9.9. Let f : X → R̄ be a locally λ

summable function. Then

limε→0+
1

λ(B(x, ε))

∫
B(x,ε)

f dλ = f (x) for λ a.e. x ∈ X .

The function f ∗ which equals the left hand side whenever the limit exists, and zero
otherwise, is called the precise representative of f .

Proof. We may assume f > 0 . Define µ by µ(A) =
∫

A f dλ for all A ⊂ X . Then µ is
Borel regular and finite on bounded subsets. Moreover, µ � λ , so∫

B
Dλµ dλ = µ(B) =

∫
B

f dλ for all B ∈ B(X) .

This implies that Dλµ = f λ a.e. Thus,

1
λ
(

B(x, ε)
) · ∫

B(x,ε)
f dλ =

µ
(

B(x, ε)
)

λ
(

B(x, ε)
)

converges to Dλµ(x) = f (x) for λ a.e. x ∈ X , by proposition 1.9.3. �

Corollary 1.9.10. If A ⊂ X is λ measurable, then

limε→0+
λ
(

A ∩ B(x, ε)
)

λ
(

B(x, ε)
) = 1A(x) for λ a.e. x ∈ X .

Corresponding to whether the left hand side is 0 or 1 for x ∈ X , this point is called of λ

density 0 resp. 1 for A.

Proof. This is just theorem 1.9.9, applied to the function 1A . �

Definition 1.9.11. Let 1 6 p < ∞ and f : X → R̄ . Then f is said to be p-summable for µ

if f is µ measurable and | f |p is µ-summable. f is said to be locally p-summable for µ if f is
µ-measurable and p-summable for µ U for U in a neighbourhood basis for X .

Corollary 1.9.12. Let 1 6 p < ∞ and f : X → R̄ be locally p-summable for µ . Then

limε→0+
1

λ
(

B(x, ε)
) · ∫

B(x,ε)
| f − f (x)|p dλ = 0 for λ a.e. x ∈ X .

A point x ∈ X for which this equality holds is called a Lebesgue point of f .

Proof. Let (rk) ⊂ R be a dense sequence. By theorem 1.9.9, there exists a µ cozero A ⊂ X
such that

limε→0+
1

λ
(

B(x, ε)
) · ∫

B(x,ε)
| f − rk|p dλ = | f (x)− rk|p for all x ∈ A , k ∈ N .
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Let x ∈ A and δ > 0 , and fix some integer k ∈ N such that | f (x)− rk|p 6 δ
2p . Abbreviate

γε = λ
(

B(x, ε)
)−1 . We may apply the inequality

(a + b)p 6 2p−1 · (ap + bp) valid for all a, b > 0

to the effect that

lim supε→0+γε

∫
B(x,ε)

| f − f (x)|p dλ

6 2p−1 ·
[
lim supε→0+ γε

∫
B(x,ε)

| f − rk|p dλ + | f (x)− rk|p
]

= 2p · | f (x)− rk|p 6 δ ,

whence our claim. �

The following corollary is established by the same principle.

Corollary 1.9.13. Let f : X → E be µ measurable, where E is a separable normed vector
space. If ‖ f ‖ is µ A summable for each bounded A ∈ M(µ) , then

limε→0+
1

λ
(

B(x, r)
) · ∫ ‖ f − f (x)‖ dλ = 0 for λ a.e. x ∈ X .

Proof. For x ∈ X , Let Ax be the set of all e ∈ E such that

limε→0+
1

λ
(

B(x, r)
) · ∫ ‖ f − e‖ dλ = ‖ f (x)− e‖ .

Fix a dense sequence (ek) ⊂ E , and apply theorem 1.9.9 to ‖ f − ek‖ to achieve the exis-
tence of a λ negligible set Nk so that ek ∈ Ax for all x ∈ X \ Nk . Letting N =

⋃∞
k=0 Ak ,

we find ek ∈ Ax for all k ∈ N , x ∈ X \ N . By the same device as above, Ax = X for all
x ∈ X \ N , so the assertion follows. �

Remark 1.9.14. Our presentation follows [EG92] rather closely, although some parts are
from [Mat95] (in particular some of the material on differentiation of measures), and
others from [Fed69] (in particular the subsections on covering theorems).
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2Hausdorff Measure

2.1 Carathéodory’s Construction

In all that follows, let (X, d) be metric.

Definition 2.1.1. Let F ⊂ P(X) , $ : F → [0, ∞] , and 0 < δ 6 ∞ . Define the size δ

approximating measure µδ by

µδ(A) = inf
{
∑G∈G $(G)

∣∣∣ G ⊂ F countable , diam G 6 δ for all G ∈ G , A ⊂
⋃
G

}
for all A ⊂ X . Then δ 7→ µδ(A) is decreasing for all A ⊂ X , so we may define

µ(A) = limδ→0+ µδ(A) for all A ⊂ X .

This is the measure associated to the Carathéodory construction forF and $. Clearly, it suffices
to know the values of $ on non-void members of F to define µδ and µ .

Proposition 2.1.2. The set functions µδ , µ are measures. If F is a Borel family, µ is a Borel
regular measure.

Proof. The empty set ∅ can be covered by an empty partition, so µδ(∅) = 0 . Take some
A ⊂ ⋃∞

k=0 Ak . Fix ε > 0 and let Gk ⊂ F be countable covers of Ak such that diam G 6 δ

for all G ∈ G =
⋃∞

k=0 Gk , and ∑G∈Gk
$(G) 6 µδ(Ak) + ε

2k+1 for all k ∈ N . Then G ⊂ F ,
and is countable. Moreover,

µδ(A) 6
∞

∑
k=0

∑
G∈Gk

$(G) 6
∞

∑
k=0

(
µδ(Ak) +

ε

2k+1

)
=

∞

∑
k=0

µδ(Ak) + ε .

Hence, µδ is a measure. It follows easily that µ is also a measure.

Now, assume that F is a Borel family. Fix A, B ⊂ X such that dist(A, B) > δ . Let
G ⊂ F be a countable cover of A ∪ B , diam G 6 δ for all G ∈ G . Consider

HC =
{

G ∈ G
∣∣ G ∩ C 6= ∅

}
for C = A, B .

Then HA ∩ HB = ∅ and HA ∪ HB covers A ∪ B since this is the case of G . Hence HC

covers C for C = A, B , and it follows that

µδ(A ∪ B) > µδ(A) + µδ(B) .

Hence, µ(A∪ B) > µ(A) + µ(B) for all A, B ⊂ X such that dist(A, B) > 0 . By Carathéo-
dory’s criterion (theorem 1.1.10), µ is a Borel measure.

Let A ⊂ X . To prove Borel regularity of µ , we may w.l.o.g. assume µ(A) < ∞ . Thus,
there exist Borel Bk ⊃ A such that µδ(Bk) 6 µδ(A) + 1

k . We may assume Bk+1 6 Bk , and
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thus
µδ(A) 6 µδ(B) = limk µδ(Bk) 6 µδ(A)

for B =
⋂∞

j=0 Bj . Thus, there exist Borel Ck ⊃ A such that µ1/k(A) = µ1/k(Ck) for all
k > 1 . Let Dk =

⋂∞
`=k C` . Then Dk is Borel and for any ` > k ,

µ1/k(A) 6 µ1/k(D`) 6 µ1/k(Ck) = µ1/k(A) ,

so µ1/k(A) = µ1/k(D`) for all ` > k . Hence,

µ(A) = supk µ1/k(A) = supk inf` µ1/k(D`) = inf` µ(D`) = µ(D)

where D =
⋂∞

`=1 D` . �

Remark 2.1.3. The above proof follows [Fed69], with some details filled in.

2.2 Hausdorff Measure and Dimension

Definition 2.2.1. Let 0 6 s < ∞ and define ωs = πs/2 · Γ
( s

2 + 1
)−1 . (For integer values

of s , this is the Lebesgue measure of the s-dimensional Euclidean unit ball.) Set

$s(F) =
ωs

2s · (diam F)s for all ∅ 6= F ⊂ X .

The s-dimensional Hausdorff measure Hs = Hs
d is the measure associated to the Carathéo-

dory construction for P(X) and $s defined as above. Since $s(A) = $s(A) , one obtains
the same measure by considering instead all closed subsets of X . Hence, by proposi-
tion 2.1.2, Hs is a Borel regular measure. Note that it is, in general, not σ-finite.

Theorem 2.2.2. Let X be separable, Y metric, f : X → Y be Lipschitz, and 0 6 s < ∞ .
For any Borel A ⊂ X , we have

Lip( f )s · Hs(A) >
∫

N
(

f
∣∣ A, y

)
dHs(y) .

Here the multiplicity function of f , N( f
∣∣ A, y) = #A ∩ f−1(y) , is Hs measurable.

Proof. Let σ(A) = Hs( f (A)
)

. Since diam
(

f (F)
)

6 Lip( f ) · diam(F) , we find

σ(A) 6 Lip( f )s · Hs(A) .

Let µ be the measure associated to Carathéodory’s construction for B(X) and σ . We
wish to prove

µ(A) =
∫

N
(

f
∣∣ A, y

)
dHs(y) for all A ∈ B(X) .

Let Pj ⊂ B(X) be countable Borel partitions of A , such that each B ∈ Pj+1 is the
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union of members of Pj , and limj supB∈Pj
diam(B) = 0 . Define

gj = ∑B∈Pj
1 f (B) for all j ∈ N .

Then, for all y ∈ Y ,

gj(y) = #
{

B ∈ Pj
∣∣ f−1(y) ∩ Pj 6= ∅

}
6 N( f

∣∣ A, y) .

Clearly, gj 6 gj+1 . Let B ⊂ f−1(y) ∩ A be a finite subset. There exists

0 < δ < infx,y∈B , x 6=y d(x, y) .

Let k ∈ N such that diam(B) 6 δ for all B ∈ P` and ` > k . For all ` > k and all x ∈ B ,
there exist x ∈ Bx ∈ P` . Then Bx ∩ By = ∅ for all x 6= y , x, y ∈ B . Hence g`(y) > #B ,
for all ` > k . Thus, N( f

∣∣ A, xy) = supj gj is Hs measurable. By corollary 1.5.6,

∫
N

(
f

∣∣ A, y
)

dHs(y) = supj ∑B∈Pj
Hs( f (B)) = supj ∑B∈Pj

σ(B) .

Clearly, µδ(A) 6 ∑B∈P`
σ(B) 6 ∑B∈P`

µ(B) = µ(A) for all ` > k (σ is σ-subadditive, and
hence 6 µ). Hence, the right hand side equals µ(A) . Moreover,

supj ∑B∈Pj
σ(B) 6 Lip( f )s · supj ∑

P∈Pj

Hs(B) = Lip( f )s · Hs(A) ,

hence the assertion. �

Corollary 2.2.3. Let X be separable and f : X → Y be Lipschitz, A ⊂ X Borel and
Hs(A) < ∞ . Then for Hs a.e. y ∈ Y , A ∩ f−1(y) is countable.

Proof. By theorem 2.2.2, N
(

f
∣∣ A, xy

)
is Hs summable, and thus Hs a.e. finite. �

Theorem 2.2.4. Let 0 6 s < ∞ .

(i). H0 is counting measure.

(ii). H1 = L1 on X = R .

(iii). If X is a separable normed vector space, then for λ > 0 , Hs(λ · A) = λs · Hs(A) ,
and for x ∈ X , Hs(A + x) = Hs(A) .

(iv). On Rn , whenever s > n , then Hs = 0 , and Hn is locally finite.

Proof of (i). Observe ω0 = 1 , in fact $0(A) = 1 for all A 6= ∅ . Since the set of all
singletons in A ⊂ X is a partition of A , we find for all countable A that

H0
δ(A) 6 #A = ∑

a∈A
$0(a) 6 ∑

a∈A
H0(a) = H0(A) .

If A is infinite, we thus have H0(A) = ∞ , and if A is finite, H0(A) = #A .
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Proof of (ii). Note ω1 = 2 , and let A ⊂ R . By definition, L1(A) 6 H1
δ(A) 6 H1(A) for

all δ > 0 . Fix δ > 0 , and a countable cover (Ak) of A , and let Ak` = Ak ∩ [δ`, δ(` + 1)]
for all ` ∈ Z . Then (Ak`) covers A , diam Ak` 6 δ , and ∑`∈Z diam(Ak`) 6 diam(Ak) for
all k ∈ N . Thus,

∞

∑
k=0

diam(Ak) > ∑(k,`)∈N×Z
diam(Ak`) > H1

δ(A) .

Taking the infimum over all (Ak) , we deduce L1(A) > H1
δ(A) . Taking the supremum

over δ , it follows that H1(A) = L1(A) .

Proof of (iii). This follows from theorem 2.2.2 by considering

d±(y) = λ±1 · y and t±(y) = x + y .

Proof of (iv). For fixed m > 1 , C = [0, 1]n is the union of the C(a, b) = ∏n
j=1[aj, bj] such

that 0 6 aj 6 bj 6 m and m · (bj − aj) = 1 . Then diam C(a, b) =
√

n
m , and the number of

such cubes is mn . Hence,

Hs√
n/m(C) 6

ωs · ns/2 ·mn−s

2s .

It follows that Hs(C) = 0 for s > n , and Hn(C) 6 ωs·ns/2

2s < ∞ . Since Rn is the countable
union of copies of C , and translates of scaled versions of C exhaust a neighbourhood
basis, this entails the claim. �

We note the following lemma.

Lemma 2.2.5. If A ⊂ X and Hs
δ(A) = 0 for some δ , then Hs(A) = 0 .

Proof. Let ε > 0 , w.l.o.g. s > 0 . Then there exists a countable cover G of A such that

∑G∈G
ωs

2s · diam(G)s 6 ε .

Then diam(G) 6 δε = 2 s
√

ε
ωs
→ 0 , so we find Hs(A) = limε→0+Hs

δε
(A) = 0 . �

Proposition 2.2.6. Let A ⊂ X and 0 6 s < t < ∞ . Then Hs(A) < ∞ implies Ht(A) = 0 .

Proof. Given δ > 0 , choose a countable cover G of A , diam(G) 6 δ for all G ∈ G , with

∑G∈G
ωs

2s · diam(G)s 6 Hs
δ(A) + 1 6 Hs(A) + 1 .

Then

Ht
δ(A) 6 ∑G∈G

ωt

2t · diam(G)t 6
ωt · δt−s

ωs · 2t−s ·
(
Hs(A) + 1

)
.

Hence, Hs(A) = 0 , as asserted. �
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The previous results motivate the following definition.

Definition 2.2.7. If X is metric, then its Hausdorff dimension is defined to be

dimH X = inf
{

s ∈ [0, ∞[
∣∣ Hs(X) = 0

}
∈ [0, ∞] .

Clearly, dimH Y 6 dimH X for all Y ⊂ X . Also dimH Rn 6 n by theorem 2.2.4 (iv). But
it is easy to see that Hn(Rn) = ∞ , so dimH Rn = n . (In fact, we shall see below that
Hn = Ln on Rn.)

We digress briefly to construct ‘fractal’ sets of non-integral Hausdorff dimension.

2.2.8. Fix 0 < λ < 1
2 . Inductively, define for all k ∈ N intervals Ikj , 1 6 j 6 2k ,

as follows. Let I0,1 = [0, 1] . Then, for k > 2 , 1 6 j 6 2k−1 , let Ik,2j−1 , Ik,2j , be the
closed intervals of diameter λk obtained from Ik−1,j by deleting an open interval of length
(1− 2λ) · λk−1 at the centre of Ik−1,j , such that max Ik,2j−1 < min Ik,2j. The compact

Cλ =
∞⋂

k=0

2k⋃
j=1

Ik,j ⊂ [0, 1]

is called the Cantor λ-set.

Proposition 2.2.9. Let 0 < λ < 1
2 . Then Cλ has the Hausdorff dimension s = − log 2

log λ . In
particular, any number in [0, 1] is attained as the Hausdorff dimension of a subset of R .

Proof. Let t ∈ R . Observe diam(Ik,j) = λk , so

Ht
λk(Cλ) 6 ωt

2k

∑
j=1

λtk

2t =
ωt

2t · (2λt)k .

Whenever t > s , then 2λt < 1 , so Ht(Cλ) = 0 . Moreover, Hs(Cλ) 6 ωs
2s . To complete

our proof, we claim that Hs(Cλ) > ωs
2s+2 > 0 .

Let I be a countable cover of Cλ by open intervals. Since Cλ is compact, we may
assume I is finite. Let ε > 0 . The set Cλ is meager, so by enlarging the diameter of each

I ∈ I by at most s
√

diam(I) + 2sε
ωs#I − diam(I) , we obtain a new covering I ε such that

the end points do not belong to Cλ , and

∑I∈I $s(I) + ε > ∑I∈I ε $s(I) .

Hence, for some δ > 0 , the end points of all I ∈ I ε are at least at a distance of δ from
the set Cλ . There exists n ∈ N , such that λk < δ for all k > n . Then any Ik,j with k > n
is contained in some I ∈ I ε . Let I ∈ I ε and fix ` > n such that I`,p ⊂ I for some p . Let
P = {1 6 p 6 2`|I`,p ⊂ I} . Now let k be minimal, such that there is some q for which
Ik,q ⊂ I . Set Q = {1 6 q 6 2k|Ik,q ⊂ I} .

We claim that #Q 6 2 . Indeed, any interval containing intervals Ik,i and Ik,j contains
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all Ik,m , i 6 m 6 j . Moreover, an interval containing Ik,2j−1 and Ik,2j also contains Ik−1,j .
Thus, if I would contain at least three Ik,j , then it would contain some Ik−1,i , contrary to
the minimality of k . Moreover, for all p ∈ P , there exists some q such that q − 1 , q or
q + 1 belongs to Q and I`,p ⊂ Ik,q (by the same argument).

Hence,

2$s(I) > ∑q∈Q $s(Ik,j) > ∑p∈P $s(I`,i)− 2$s(Ik,1) > ∑p∈P $s(I`,i)− 2$s(I) .

This implies

∑I∈I $s(I) + ε > ∑I∈I ε $s(I) >
1
4
·∑I∈I ε ∑Im,p⊂I $s(Im,p) >

1
4

2`

∑
p=1

$s(I`,p) =
ωs

2s+2 .

Since ε > 0 and I were arbitrary, we find Hs(Cλ) > ωs
2s+2 as claimed. �

Remark 2.2.10. The above theorems are a mixture of [Fed69] and [EG92]. The proof of
proposition 2.2.9 follows [Mat95, 4.11], although the proof given there is erroneous.

2.3 Densities

Definition 2.3.1. Let µ be a measure on X and 0 6 s < ∞ . Define the upper and lower
s-density of µ at x ∈ X by

Θ∗
s (µ, x) = lim supε→0+

µ
(

B(x, ε)
)

ωsεs and Θ∗s(µ, x) = lim infε→0+
µ
(

B(x, ε)
)

ωsεs .

Whenever these numbers agree in [0, ∞] , define the s-dimensional density of µ at x, de-
noted Θs(µ, x) , to be their common value. If µ = Hs A , we write Θ∗

s (A, x) , etc.

2.3.2. Before stating our main theorem on densities, we make the following simple ob-
servation: A point x ∈ X is not isolated if and only if there exists a sequence rk → 0+
such that diam

(
B(x, rk)

)
> rk for all k ∈ N .

Indeed, if x ∈ X is isolated, then there exists R > 0 such that B(x, R) = x . Then
B(x, r) = x for all 0 < r 6 R , so there exists no such sequence. Conversely, assume that
x ∈ X is not isolated. Then there are xk ∈ B

(
x, 1

k

)
\ x . Let rk = d(x, xk) . Then rk has the

required properties.

Theorem 2.3.3. Let µ be a measure, B ⊂ X , and 0 < α < ∞ . Then

Θ∗
s (µ, x) 6 α for all x ∈ B ⇒ µ B 6 2sα · Hs B .

If, moreover, X is separable, µ is finite and Borel regular, and B does not contain an
isolated point of X , then

Θ∗
s (µ, x) > α for all x ∈ B ⇒ µ B > α · Hs B .
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Remark 2.3.4. The point of the theorem is that we do not need any additional assump-
tions on the separable metric space X , whereas in lemma 1.9.2, we needed σ-directional
limitation.

Proof of theorem 2.3.3. Let Θ∗
s (µ, xy) 6 α on B . Let A ⊂ X . There exists a countable

cover G of A ∩ B such that

∀G ∈ G ∃ xG ∈ G∩ A∩ B , 0 < rG = diam(G) < ∞ , andHs(A∩ B) + ε > ∑G∈G $s(G) .

Then

(µ B)(A) 6 ∑G∈G(µ B)(A ∩ G) 6 ∑G∈G µ
(

B(xG, rG)
)

6 α ·∑G∈G ωsrs
G = 2sα ·∑G∈G $s(G) 6 2sα ·

(
Hs(A ∩ B) + ε

)
,

proving the first assertion.

Let Θ∗
s (µ, xy) > α on B , and make the additional assumptions. Choose 1 < τ < ∞

and let η = 2(2 + 2τ) . Then, for x ∈ B , and arbitrarily small r > 0 ,

diam
(

B(x, (1 + 2τ)r)
)

6 2(1 + 2τ)r < η · r 6 η · diam
(

B(x, r)
)

.

Let A ⊂ X . We may assume that A is Borel, because µ and Hs B are Borel regular. By
theorem 1.1.9 (i), there exists an open U ⊃ A ∩ B such that µ(U) 6 µ(A ∩ B) + ε

2 . Fix
δ > 0 , and let F be set of all B(x, r) , x ∈ A ∩ B , r 6 δ

η , subject to the conditions

B
(
x, (1 + 2τ)r

)
⊂ U , diam

(
B(x, r)

)
> r , and µ

(
B(x, r)

)
> α ·ωs · rs > 0 .

By assumption, F is a closed fine cover of A ∩ B , and

δ(F̂) < η · δ(F) for all F ∈ F where δ(F) = diam(F) .

Thus, by corollary 1.7.8, there exists a disjoint G ⊂ F , such that

(A ∩ B) \
⋃
H ⊂

⋃{
Ĝ

∣∣ G ∈ G \H
}

for all finite H ⊂ G .

We have µ(U) < ∞ and µ(G) > 0 for all G ∈ G . Hence, G is countable, and we have

∑G∈G µ(G) 6 µ(U) < ∞ . Choose H ⊂ G finite such that ∑G∈G\H µ(G) 6 ε
2ηs . Then

α · Hs
δ(A ∩ B) 6 ∑G∈H α$s(G) + ∑G∈G\H α$s(Ĝ)

6
1
2s ∑G∈H µ(G) + ∑G∈G\H ηsαµ(G) 6 µ(U) +

ε

2
6 µ(A ∩ B) + ε ,

proving the assertion. �

Corollary 2.3.5. Assume that X is separable, and contains no isolated points. If µ is Borel
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regular, and A ∈ M(µ) , µ(A) < ∞ , then

Θ∗
s (µ A, x) = 0 for Hs a.e. x ∈ X \ A .

Proof. By proposition 1.1.7, µ A is a finite Borel measure. For any n > 1 , let

Bn = (X \ A) ∩
{

Θ∗
s (µ, xy) >

1
n

}
.

Assume Hs(Bn) > 0 . Since µ(A) < ∞ , there exists by lemma 1.1.8 a closed C ⊃ Bn such
that µ(A \ C) < 1

n · Hs(Bn) . But theorem 2.3.3 gives

µ(A \ C) = (µ A)(X \ C) >
1
n
· Hs(X \ C) >

1
n
· Hs(Bn) ,

a contradiction! Thus Hs(Bn) = 0 , and taking unions, the claim follows. �

Corollary 2.3.6. Assume that X is separable, and contains no isolated points. Whenever
Hs(A) < ∞ , then

Θ∗
s (A, x) 6 1 for Hs a.e. x ∈ X .

Proof. Since Hs is Borel regular, we may assume that A is Borel. For n > 1 , define
Bn =

{
Θ∗

s (A, xy) > 1 + 1
n

}
. Since Hs A is Borel regular and finite, theorem 2.3.3 gives

∞ > Hs(Bn) > (Hs A)(Bn) >
(

1 +
1
n

)
· Hs(Bn) ,

so Hs(Bn) = 0 . Taking intersections, the assertion follows. �

Remark 2.3.7. The proof of the density results is from [Fed69]. The proof in [Mat95,
th. 6.2.] is erroneous; it assumes that Hs be a Radon measure, which is usually false.

2.4 Isodiametric Inequality and Uniqueness of Measure on Rn

It is an important and striking fact that for any norm ‖xy‖ on Rn , the Hausdorff mea-
sure Hn

‖xy‖ equals the Euclidean Lebesgue measure Ln up to a fixed constant. The main
ingredient in its proof, the isodiametric inequality, states that the ‖xy‖-unit ball is the set
of maximal Lebesgue measure among the sets of ‖xy‖-diameter 2 . To prove this, we first
establish the Brunn-Minkowski inequality.

Theorem (Brunn-Minkowski-Lusternik) 2.4.1. Let ∅ 6= A, B ⊂ Rn be Ln measurable,
and t ∈ [0, 1] . If tA + (1− t)B is Ln measurable, then

Ln(
tA + (1− t)B

)1/n
> tLn(A)1/n + (1− t)Ln(B)1/n .
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Proof. We shall assume, as we may w.l.o.g., that 0 < t < 1 .

First, we shall prove the statement for boxes whose sides are parallel to the coordi-
nate hyperplanes. By Fubini’s theorem 1.6.2, for any box A of side lengths 0 < xj < ∞ ,
we have Ln(B) = ∏n

j=1 xj . If A = a + ∏n
j=1[0, xj] and B = b + ∏n

j=1[0, yj] , then
A + B = a + b + ∏n

j=1[0, xj + yj] , so Ln(A + B) = ∏n
j=1(xj + yj) .

Recall that the arithmetic-geometric mean inequality states

n
√

a1 · · · an 6
1
n
·
(
a1 + · · ·+ an

)
for all aj > 0 .

It gives

tLn(A)1/n + (1− t)Ln(B)1/n

Ln
(
tA + (1− t)B

) =
( n

∏
j=1

txj

txj + (1− t)yj

)1/n
+

( n

∏
j=1

(1− t)yj

txj + (1− t)yj

)1/n

6
1
n
·

n

∑
j=1

txj

txj + (1− t)yj
+

1
n
·

n

∑
j=1

(1− t)yj

txj + (1− t)yj
= 1 ,

so the statement is correct for boxes.

We now prove the statement for finite unions of boxes. So, let A and B be finite
unions of boxes mutually not intersecting in their interiors, such that that the total num-
ber is at most k > 2 , and assume the inequality has been established for unions whose
total number of boxes is < k .

By possibly exchanging A and B , w.l.o.g. there exists an affine hyperplane H parallel
to the coordinate hyperplanes, such that A± = H± ∩ A are unions of fewer boxes than
A is, where H± are the closed half spaces defined by H . (Otherwise, k 6 2 , which we
have excluded.) 1 For B± = G± ∩ B , where G is some translate of H , we have

Ln(A±)
Ln(A)

=
Ln(B±)
Ln(B)

.2

1 The proof of the existence of the hyperplane H goes as follows. Observe that if P = a + ∏n
j=1[0, xj]

and Q = b + ∏n
j=1[0, yj] are two boxes, then for Q to not to be on the opposite side as P of the hyperplane

{prj = aj} , say, amounts to the inequality xj > aj . For Q not to be on the opposite side of each of the 2n
hyperplanes spanned by the top-dimensional faces of P amounts to 2n inequalities, which then gives an
n-dimensional intersection P ∩Q . If P and Q only intersect in their boundaries if they are distinct, we find
P = Q . Thus, w.l.o.g., let A be the union of at least two boxes. Then there exists an affine hyperplane H
parallel to one of the coordinate hyperplanes, such that at least two of the boxes are completely on opposite
sides of H . Every other box is either dissected by H , in which case it contributes to both A+ and A− , or
lies on one side of H , in which case it contributes only to A+ or only to A− . Since at least one box only
contributes to either side, the total number of boxes in A± is strictly less than in A .

2 Say H = {pr1 = 0} . Consider B+
t = B ∩ {pr1 6 t} . Then

f (t) = Ln(B+
t ) =

∫ t

−∞
Ln−1(B ∩ {pr1 = t}) dL1(t)

(Fubini) is continuous by Lebesgue’s theorem. The intermediate value theorem gives one equation, and the
other follows by additivity of Ln , because A+ ∩ A− and B+ ∩ B− are Ln negligible.
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Then B± are unions of at most as many boxes as B is. Hence, Aε ∪ Bε are unions of < k
boxes for ε2 = 1 . This implies

Ln(tA + (1− t)B) > ∑
ε2=1

Ln(tAε + (1− t)Bε) > ∑
ε2=1

(
tLn(Aε)1/n + (1− t)Ln(Bε)1/n)n

=
(

1 +
(1− t)Ln(B)1/n

tLn(A)1/n

)n
· ∑

ε2=1

tnLn(Aε)

=
(

1 +
(1− t)Ln(B)1/n

tLn(A)1/n

)n
· tnLn(A) =

(
tLn(A)1/n + (1− t)Ln(B)1/n)n ,

which proves the assertion for finite unions of boxes.
Next, assume that A, B be compact. Let Gj and Hj be families of boxes mutually

intersecting only along their boundaries, such that

A ⊂ Aj+1 ⊂ Aj =
⋃
Gj and B ⊂ Bj+1 ⊂ Bj =

⋃
Hj .

Then

tLn(A)1/n + (1− t)Ln(B)1/n 6 lim supj
(
tLn(Aj)1/n + (1− t)Ln(Bj)1/n)

6 lim supj L
n(

tAj + (1− t)Bj
)1/n .

We may assume that Aj ⊂ A1/2j and Bj ⊂ B1/2j , where Cε = {c ∈ Rn|dist(c, C) 6 ε} .
If G is any cover of C , then

{
Gε

∣∣ G ∈ G
}

is a cover of C , so Ln(C) 6 (1 + 2ε)nLn(C) .

We find tAj + (1− t)Bj ⊂
(
tA + (1− t)B

)1/2j , and hence

lim supj L
n(

tAj + (1− t)Bj
)

6 lim supj
(
1 + 1

j

)n · Ln(tA + (1− t)B) ,

which proves the assertion for compact A, B .
Finally, let A , B , and tA + (1− t)B be Ln measurable. Of course, we may assume

Ln(tA + (1 − t)B) < ∞ . By theorem 1.1.9 (iii), let A \ ⋃∞
j=0 Aj and B \ ⋃∞

j=0 Bj be Ln

negligible, where Aj ⊂ Aj+1 and Bj ⊂ Bj+1 are compacts.
Then Cj = tAj + (1− t)Bj ⊂ Cj+1 , and (tA + (1− t)B) \⋃∞

j=0 Cj is Ln negligible. By
proposition 1.1.3, we have

Ln(
tA + (1− t)B

)1/n = limk Ln(Cj) > limk tLn(Aj)1/n + limj(1− t)Ln(Bj)1/n

= tLn(A)1/n + (1− t)Ln(B)1/n ,

finally proving the theorem. �
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Isodiametric Inequality (Bieberbach-Urysohn-Mel’nikov) 2.4.2. Let ‖xy‖ be any norm
on Rn , A ⊂ Rn , and 2r = diam(A) , taken w.r.t. ‖xy‖ . Then

Ln(A) 6 Ln{‖xy‖ 6 r} .

Proof. We may assume r < ∞ and A closed (Ln(A) 6 Ln(A) and diam(A) = diam(A) ).
So A is compact, and B = 1

2 (A− A) gives diam(B) 6 diam(A) . Moreover, theorem 2.4.1
shows

Ln(B) >
( 1

2 · L
n(A)1/n + 1

2 · L
n(−A)1/n)n = Ln(A) .

But since B = −B , we find for any x ∈ B that 2‖x‖ = ‖x− (−x)‖ 6 diam B 6 2r , so B
is contained the ball of radius r . We conclude

Ln(A) 6 Ln(B) 6 Ln{‖xy‖ 6 r} ,

which was our claim. �

Theorem 2.4.3. Let ‖xy‖ be a norm on Rn and Hn = Hn
‖xy‖ the n-dimensional Hausdorff

measure w.r.t. this norm. Then Hn = ωn
Ln{‖xy‖61} · L

n , in particular, Hn{‖xy‖ 6 1} = ωn

is independent of the norm.

Proof. Let B(x, r) = {‖xy− x‖ 6 r} be the ball w.r.t. ‖xy‖ .

Theorem 2.2.2 implies that for all x ∈ Rn , λ > 0 , Hn(B(x, r)) = λn · Hn(B(0, 1)) . By
theorem 2.2.4 (iv), Hn is locally finite. Thus, for C = Hn(B(0,1))

Ln(B(0,1)) , we have Hn = C · Ln , by
corollary 1.9.6.

The isodiametric inequality (theorem 2.4.2) implies that for any countable cover G of
B(0, 1) such that diam(G) 6 δ for all G ∈ G ,

Ln(
B(0, 1)

)
6 ∑G∈G L

n(G) 6
Ln(0, 1)

ωn
·∑G∈G

diam(G)n ·ωn

2n ,

so ωn 6 Hn
δ

(
B(0, 1)

)
6 Hn(

B(0, 1)
)

. In particular, Hn 6= 0 .

Then corollary 2.3.6 gives

Hn(
B(x, 1)

)
= ωn · lim supε→0+

µ
(

B(x, ε)
)

ωn · εn 6 ωn for Hn a.e. x ∈ Rn .

But the left hand side is independent of x , so Hn(
B(0, 1)

)
6 ωn , because Hn 6= 0 . Thus,

Hn(
B(0, 1)

)
= ωn , proving the theorem. �

Remark 2.4.4. Using the area formula (see section 4), one can prove that ωn is the volume
of the Euclidean unit ball, but we shall not use this result at this point.

The isodiametric inequality also implies the following generalisation of theorem 2.2.2.

Theorem 2.4.5. Let m 6 s 6 n and f : Rn → Rm be Lipschitz w.r.t. some arbitrary norms.
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Then ∫
Hs−m(

A ∩ f−1(y)
)

dLm(y) 6
Lip( f )m · Lm{‖xy‖ 6 1} ·ωs−m

ωs
· Hs(A)

for all A ∈ B(Rn) and the Hausdorff measures Hs , Hs−m associated to the given norm.

Proof. For any k > 1 , there exist countable covers Gk of A , such that

∑G∈Gk
$s(G) 6 Hs(A) + 1

k .

If y1, y2 ∈ f (G) , G ∈ Gk , then there exist xj ∈ G , f (xj) = yj , j = 1, 2 . Thus,

‖y1 − y2‖ 6 Lip( f ) · ‖x1 − x2‖ 6 Lip( f ) · diam G .

We obtain diam f (G) 6 Lip( f ) · diam G , and thus

Lm(
f (G)

)
6

Lm · αm

ωm
· $m(G) , where L = Lip( f ) and αm = Lm{‖xy‖ 6 1} ,

by the isodiametric inequality (theorem 2.4.2). Fatou’s lemma (theorem 1.5.5) and mono-
tone convergence (corollary 1.5.6) imply∫
Hs−m(

A ∩ f−1(y)
)

dLm(y)

6 lim infk

∫
Hs−m

1/k

(
A ∩ f−1(y)

)
dLm(y) 6 lim infk

∫
∑G∈Gk

$s−m
(
G ∩ f−1(y)

)
Lm(y)

6 lim infk ∑G∈Gk
$s−m(G) · Lm(

f (G)
)

6
Lm · αm

ωm
· lim infk ∑G∈Gk

($s−m · $m)(G)

6
Lm · αm ·ωs−m

ωs
· lim infk ∑G∈Gk

$s(G) 6
Lm · αm ·ωs−m

ωs
· Hs(A) ,

proving the assertion. �

Corollary 2.4.6. Let ‖xy‖ be a seminorm on Rn . There exists L > 0 , such that for ε > 0 ,

2L
ωn

· Hn{ε 6 ‖xy‖ 6 1} >
1− εn

n ·ωn−1
· Hn−1{‖xy‖ = 1} ,

for the Hausdorff measures Hn , Hn−1 to some norm.

Proof. Consider the L-Lipschitz map ‖xy‖ : Rn → R . Then L1([−1, 1]
)

= 2 , and theo-
rem 2.4.5 implies

2L ·ωn−1

ωn
· Hn{‖xy‖ 6 1} >

∫ 1

ε
Hn−1{‖xy‖ = r} dL1(r) = Hn−1{‖xy‖ = 1} ·

∫ 1

ε
rn−1 dr ,

by theorem 2.2.4 (iii). Now,
∫ s

0 rn−1 dr = sn

n by standard arguments (Lebesgue’s theorem
and Lipschitz continuity of 1

n idn). �
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Remark 2.4.7. The constants in the above corollary can be removed to give an equality.
This can be proved by using the area formula, but we shall use the corollary in the above
form in the area formula’s proof.

The proof of the Brunn-Minkowski and isodiametric inequalities is essentially from
the book [BZ88]. The proof of theorem 2.4.3 is from [Kir94, lem. 6]. Theorem 2.4.5 is
[Mat95, th. 7.7].
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3Lipschitz Extendibility and Differentiability

3.1 Extension of Lipschitz Functions

The most significant Lipschitz extendibility result is the Kirszbraun extension theorem
on the extendibility of functions defined on subsets of finite dimensional Euclidean
spaces. It was extended to infinite dimensions by Valentine. We give short proof based
on the Fenchel duality theorem, as follows.

Theorem (Kirszbraun-Valentine) 3.1.1. Let Hj , j = 1, 2 , be Hilbert spaces, ∅ 6= D ⊂
H1 , and f : D → H2 be Lipschitz. There exists a Lipschitz extension g : H1 → H2 such
that Lip(g) = Lip( f ) .

Proof. Assume that the theorem be true for H1 = H2 . Then we may consider the func-
tion h : D ⊕H2 → H1 ⊕H2 : (ξ, η) 7→ (0, f (ξ)) to extend it to the general situation.
Moreover, it suffices to prove the assertion for Lip( f ) = 1 . Indeed, the statement is
trivial for Lip( f ) = 0 , and we may consider Lip( f )−1 · f for Lip( f ) > 0 . �

The remainder of the proof is divided into a series of lemmata. To that end, let a subset
∅ 6= D ⊂ H = H1 = H2 and a 1-Lipschitz map f : D → H be given, such that there
exists no true 1-Lipschitz extension of f .

Moreover, define χ : H2 →]−∞, ∞] by

χ(ξ, η) = supζ∈D
(
‖η − f (ζ)‖2 − ‖ξ − ζ‖2) .

Lemma 3.1.2. We have χ > 0 and {χ = 0} = Gr( f ) , the graph of f .

Proof. Let ξ, η ∈ H . If ξ ∈ D , then

χ(ξ, η) > ‖η − f (ξ)‖2 − ‖ξ − ξ‖2 = ‖η − f (ξ)‖2 > 0 .

If ξ 6∈ D , then any extension of f to D ∪ ξ is not 1-Lipschitz. In particular, there exists
ζ ∈ D , such that ‖η − f (ζ)‖2 > ‖ξ − ζ‖2 . Hence, χ(ξ, η) > 0 .

This proves the first assertion and that {χ = 0} ⊂ D×H . Thus, χ(ξ, η) = 0 implies,
by the above calculation, that

0 = χ(ξ, η) > ‖η − f (ξ)‖2 > 0 ,

so (ξ, η) ∈ Gr( f ) . Conversely, for η = f (ξ) , we have, for all ζ ∈ D ,

‖η − f (ζ)‖2 = ‖ f (ξ)− f (ζ)‖ 6 ‖ξ − ζ‖2 ,

so χ(ξ, η) 6 0 . Since χ(ξ, η) , the assertion follows. �
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Lemma 3.1.3. Let ϕ : H2 →]−∞, ∞] be defined by

ϕ(ξ, η) =
1
4
· χ(ξ + η, ξ − η) + (ξ : η) for all ξ, η ∈ H .

Then the following holds.

(i). We have, for all ξ, η ∈ H ,

4 · ϕ(ξ, η) = supζ∈D
(
‖ f (ζ)‖2 − ‖ζ‖2 + 2 · (ξ : ζ − f (ζ)) + 2 · (η : ζ + f (ζ))

)
.

(ii). For all ζ ∈ D ,

4 · ϕ
( ζ + f (ζ)

2
,

ζ − f (ζ)
2

)
= ‖ζ‖2 − ‖ f (ζ)‖2 .

(iii). ϕ is a proper l.s.c. convex function, and for the Fenchel dual, we have ϕ∗ > ϕ .

Proof of (i). For all ζ , we have

‖ξ − η − f (ζ)‖2 − ‖ξ + η − ζ‖2

= −4(ξ : η)− 2(ξ − η : f (ζ)) + 2(ξ + η : ζ) + ‖ f (ζ)‖2 − ‖ζ‖2

= −4(ξ : η) + 2(ξ : ζ − f (ζ)) + 2(η : ζ + f (ζ)) + ‖ f (ζ)‖2 − ‖ζ‖2 ,

and hence our claim follows.

Proof of (ii). We have

4 · ϕ
( ζ + f (ζ)

2
,

ζ − f (ζ)
2

)
= χ

(
ζ, f (ζ)

)
+ (ζ + f (ζ) : ζ − f (ζ))

= (ζ + f (ζ) : ζ − f (ζ)) = ‖ζ‖2 − ‖ f (ζ)‖2 .

Proof of (iii). The lower semicontinuity is clear from (1). The properness follows, since
ϕ > −∞ everywhere is obvious, and ϕ attains finite values by (2). Its convexity also
follows from (1), since this exhibits ϕ as an upper envelope of affine functions.

Moreover, for all ζ ∈ D ,

ϕ∗(η, ξ) >
1
2
·
(
(ζ + f (ζ))⊕ (ζ − f (ζ)) : η ⊕ ξ

)
− ϕ

( ζ + f (ζ)
2

,
ζ − f (ζ)

2

)
,

and the supremum of the right hand side is ϕ(ξ, η) . �

Proof of theorem 3.1.1 (continued). Let f : D → H be as before. We wish to show that
D = H . First, we establish 0 ∈ D . To that end, we note that h(ξ, η) = 1

2 · ‖ξ ⊕ η‖2
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equals its own Fenchel dual. Moreover,

4 ·
(

ϕ(ξ, η) + h(ξ, η)
)

= χ(ξ + η, ξ − η) + 4 · (ξ : η) + 2 ·
(
‖ξ‖2 + ‖η‖2)

= χ(ξ + η, ξ − η) + 2 · ‖ξ + η‖2 . (∗)

This implies
ϕ∗(η, ξ) + h(η, ξ) > ϕ(ξ, η) + h(ξ, η) > 0 ,

by lemma 3.1.3 (iii).

Then Fenchel’s theorem gives (ξ, η) ∈ H ×H such that ϕ(ξ, η) + h(−ξ,−η) 6 0 .
From the equation (∗), we find ξ = −η and χ(0, ξ − η) = 0 . This implies, by lem-
ma 3.1.2, that (0, ξ − η) ∈ Gr( f ) , in particular, 0 ∈ D .

For any ξ ∈ H , we may now consider the function fξ : D − ξ → H , defined by
fξ(η) = f (η + ξ) . Then fξ satisfies all the conditions imposed on f , and we deduce
0 ∈ D− ξ , so ξ ∈ D . Thus, D = H .

Let now f : D → H be any 1-Lipschitz map, D 6= ∅ . The set of all pairs (E, g)
where D ⊂ E ⊂ H and g : E → H is a 1-Lipschitz extension of f . This set is ordered in
the natural fashion, and thus contains a maximal chain C by the Hausdorff maximality
principle.

Define F to be the union of all E where (E, g) ∈ C , and h : F → H by h(ξ) = g(ξ) if
ξ ∈ E and (E, g) ∈ C . h is a well-defined 1-Lipschitz map because C is a chain. Clearly,
h does not have a true extension to a 1-Lipschitz map. Hence, we conclude that F = H
and h is the desired extension of f . �

Remark 3.1.4. Our presentation of the proof of the Kirszbraun-Valentine theorem fol-
lows [RS05] closely.

A minor but nonetheless useful Lipschitz extendibility result is as follows.

Proposition 3.1.5. Let (X, d) be a metric space, ∅ 6= D ⊂ X , and f : D → `∞ be Lip-
schitz. Then

g(x)j = infy∈D
(

f (y)j + Lip( f j) · d(x, y)
)

for all x ∈ X , j ∈ N

defines a Lipschitz extension g : X → `∞ of f such that Lip(g) = Lip( f ) .

Proof. Clearly, it suffices to argue for each component separately, so we reduce to the
case that f takes values in R . Let x1, x2 ∈ X , and ε > 0 . There exists y ∈ D such that
g(x2) + ε > f (y) + Lip( f ) · d(x2, y) . Thus

g(x1)− g(x2) 6 ε + f (y) + Lip( f ) · d(x1, y)−
(

f (y) + Lip( f ) · d(x2, y)
)

6 ε + Lip( f ) · d(x1, x2) .

Since the right hand side is invariant under permutation of x1 and x2 , it follows that g



3.2. Differentiability of Functions of Bounded Variation 49

is Lip( f )-Lipschitz. Since g clearly extends f , we have Lip(g) = Lip( f ) . �

3.1.6. We point out that the previous result furnishes extensions (with possibly larger
codomain) for any Lipschitz function with values in a separable metric space, since any
such space can be embedded into `∞ .

Indeed, let (X, d) be metric and (xk) a dense sequence. We may assume d be bounded
(otherwise consider, e.g., d

1+d ). Define ϕ : X → `∞ by ϕ(x)j = d(x, xj)− d(x0, xj) . Then∣∣d(x, xj)− d(x0, xj)−
(
d(y, xj)− d(x0, xj)

)∣∣ =
∣∣d(x, xj)− d(y, xj)

∣∣ 6 d(x, y) .

On the other hand, given ε > 0 , there is j ∈ N such that d(x, xj) 6 ε
2 , so

‖ϕ(x)− ϕ(y)‖∞ >
∣∣d(x, xj)− d(y, xj)

∣∣ > d(y, xj)−
ε

2
> d(x, y)− ε ,

and thus ϕ is indeed an isometry.

3.1.7. We have seen above that any separable metric space can be embedded in the unit
ball of some dual Banach space. In this context we also mention that the converse can
be easily established as follows. Let X be a separable Banach space. Choose a dense
sequence (xk) in B(X) . Then

dσ(µ, ν) =
∞

∑
k=0

1
2k ·

∣∣〈xk : µ− ν〉
∣∣ for all µ, ν ∈ X∗

defines a metric dσ on X which induces the σ(X∗, X)-topology on bounded subsets.

3.2 Differentiability of Functions of Bounded Variation

On our way to substantial multivariate differentiability results for Lipschitz functions,
we need first to consider the one-variable case. The fundamental result in this domain
is the following version of the Lebesgue differentiation theorem.

Theorem (Lebesgue) 3.2.1. Let a, b ∈ R , a < b , and f : [a, b] → R be increasing. Then f
is L1 a.e. differentiable, the differential f ′ : [a, b] → R is L1 summable, and

∫ b

a
f ′ dL1 6 f (b)− f (a) .

Proof. Define a finite measure µ on R by

µ(A) = inf
{

f (d)− f (c)
∣∣ A ∩ [a, b] ⊂ [c, d] ⊂ [a, b]

}
for all A ⊂ R .

It is obvious, by Caratheodory’s criterion theorem 1.1.10, that µ is a Borel measure. By
definition, for all A ⊂ R , ε > 0 , there exists an interval A ⊂ [c, d] ⊂ [a, b] such that
µ([c, d]) 6 µ(A) + ε . Hence, µ is Borel regular.
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By proposition 1.9.3, DL1 µ(x) exists and is finite for L1 a.e. x ∈ R . Hence, for
L1 a.e. x ∈ [a, b] ,

f (x + ε)− f (x)
ε

+
f (x)− f (x− ε)

ε
=

f (x + ε)− f (x− ε)
ε

= 2 ·
µ
(

B(x, ε)
)

L1
(

B(x, ε)
)

converges to DL1 µ(x) . Denote

D+ f (x) = lim supε→0+
f (x + ε)− f (x)

ε
, D+ f (x) = lim infε→0+

f (x + ε)− f (x)
ε

,

D− f (x) = lim supε→0+
f (x)− f (x− ε)

ε
, D− f (x) = lim infε→0+

f (x)− f (x− ε)
ε

.

If the left hand side of the above equation converges and one of its summands converges,
the other also converges. This argument shows that

−∞ < D+ f (x) 6 DL1 µ(x) 6 D− f (x) < ∞ for L1 a.e. x ∈ [a, b] .

The same reasoning, applied to − f (a + b− xy) , gives D− f 6 D+ f L1 a.e. Hence,

−∞ < D+ f 6 DL1 µ 6 D− f 6 D− f 6 D+ f 6 D+ f L1 a.e.

Therefore, f is L1 a.e. differentiable, and f ′ = DL1 µ L1 a.e., so theorem 1.9.5 gives

∫ b

a
f ′ dL1 =

∫ b

a
DL1 µ dL1 6 µ

(
[a, b]

)
= f (b)− f (a) ,

Finally, f ′ is L1 measurable by proposition 1.9.3, and thus L1 summable. �

Definition 3.2.2. A function f : [a, b] → R is said to have bounded variation if its total
variation

Var( f ) = supa=x0<···<xm=b

m−1

∑
j=0

∣∣ f (xj+1)− f (xj)
∣∣

is finite. Clearly, any Lipschitz function f : [a, b] → R is of bounded variation with
Var( f ) 6 Lip( f ) . (More generally, any absolutely continuous function is of bounded
variation.) If f is defined on some (non-compact) interval, it is said to locally have bounded
variation if f

∣∣ [a, b] is of bounded variation for any [a, b] ⊂ I .
The positive and negative variation are defined by

Var±( f ) = supa=x0<···<xm=b

m−1

∑
j=0

(
f (xj+1)− f (xj)

)±
where we recall x+ = max(x, 0) and x− = −min(x, 0) = max(−x, 0) for all x ∈ R .
Observe that x± > 0 and x = x+ − x− .

Proposition 3.2.3. Let a ∈ I ⊂ R be an interval, f : I → R have locally bounded
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variation, and define, for all x ∈ I ,

t±(x) =

Var±
(

f
∣∣ [a, x]

)
a 6 x ,

−Var±
(

f
∣∣ [x, a]

)
x < a .

Then t± are increasing, f = f (a) + t+ − t− , and whenever f = s+ − s− where s± are
increasing, then so are s± − t± .

Proof. Since f has bounded variation, t± are well-defined as real-valued functions. Let
a 6 x 6 y . We have

Var±
(

f
∣∣ [a, y]

)
−Var±

(
f

∣∣ [a, x]
)

= Var±
(

f
∣∣ [x, y]

)
> 0 ,

since we might as well take weakly increasing partitions in the definitions of the pos-
itive and negative variation. Hence, t±(y)− t±(a) > 0 . By applying the permutation
(a, x, y) 7→ (x, y, a) , we find that this also true in case x 6 y 6 a . The case x 6 a 6 y
being trivial, t± are increasing.

Let a = x0 < · · · < xm = x , and denote Σ± = ∑m−1
j=0

(
f (xj+1)− f (xj)

)± . Then

f (x)− f (a) =
m−1

∑
j=0

(
f (xj+1)− f (xj)

)
= Σ+ − Σ− ∈

[
Σ+ − t−(x), t+(x)− Σ−

]
.

Noting t+(x) = sup Σ+ and −t−(x) = inf
(
−Σ−

)
, the supremum/infimum being taken

over all partitions of [a, x] , we find f (x)− f (a) = t+(x)− t−(x) , as required. Exchang-
ing x and a , we find that the equation is valid on all of I .

Finally, let f = s+ − s− , the difference of increasing functions. Fix x < y in I . Then

s+(y)− t+(y) = f (y)− t+(y) + s−(y) = f (a) + t−(y) + s−(y)

> f (a) + t−(x) + s−(x) = f (x)− t+(x) + s−(x) = s+(x)− t+(x) ,

so s+− t+ is increasing. Replacing f by− f (a + b−xy) , we find that s−− t− is increasing,
too. �

Remark 3.2.4. The above decomposition is often called the minimal decomposition of a
function of locally bounded variation.

Corollary 3.2.5. Let f : I → R be locally of bounded variation. Then f is L1 a.e. differen-
tiable, and the derivative f ′ is locally L1 integrable. In particular, any locally Lipschitz
function is L1 a.e. differentiable.

Proof. This is immediate from theorem 3.2.1, proposition 3.2.3, and the σ-compactness
of R . �

Remark 3.2.6. Our presentation follows [Els99]. See, e.g., [Sim96] for an alternative ap-
proach.
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3.3 Rademacher’s Theorem, Weak and Metric Differentiability

The basic theorem on differentiability of is the following one, due to Rademacher. The
Kirszbraun-Valentine extension theorem allows its application to any Lipschitz map de-
fined on an arbitrary subset of Rm .

Theorem (Rademacher) 3.3.1. If f : Rm → Rn is Lipschitz, it is Lm a.e. differentiable.

Proof. Of course, if suffices to consider the case n = 1 . Fix e ∈ Sm−1 . The set Ne

of all x ∈ Rm where t 7→ f (x + t · e) is not differentiable, is a Borel set. By corol-
lary 3.2.5, H1(Ne ∩ (x + Re)

)
= 0 for all x ∈ Rm . Thus, Fubini’s theorem 1.6.2 allows us

to conclude that Lm(Ne) = 0 .

Define the gradient ∇ f (x) =
(
∂1 f (x), . . . , ∂m f (x)

)
whenever it exists. As we have

seen, ∇ f (x) exists for Lm a.e. x ∈ Rm . Moreover, ∂e f (x) exists for Lm a.e. x ∈ Rm . Let
ϕ ∈ C(∞)

c (Rm) . For any ε > 0 ,

∫ f (x + ε · e)− f (x)
ε

· ϕ(x) dLm(x) = −
∫

f (x) · ϕ(x)− ϕ(x− ε · e)
ε

dLm(x) .

Since |ϕ| 6 ‖ϕ‖∞ · 1supp ϕ and f is Lipschitz, we may apply Lebesgue’s dominated con-
vergence theorem 1.5.7 to the effect that

∫
∂e f (x)ϕ(x) dLm(x) = −

∫
f (x)∂e ϕ(x) dLm(x) = −

m

∑
j=1

ej

∫
f (x)∂j ϕ(x) dLm(x)

=
m

∑
j=1

ej

∫
∂j f (x)ϕ(x) dLm(x) =

∫
(e : ∇ f (x))ϕ(x) dx .

We conclude that ∂e f (x) = (e : ∇ f (x)) for Lm a.e. x , for any e ∈ Sm−1 .

Fix a dense countable subset E ⊂ Sm−1 . Then Lm is concentrated on the intersection
A =

⋂
e∈E

{
∂e f = (e : ∇ f (x))

}
. We claim that f is differentiable at any x ∈ A . To that

end, fix x ∈ A and define

∆ε(e) =
f (x + ε · e)− f (x)

ε
− (e : ∇ f (x)) for all ε > 0 , e ∈ Sm−1 .

Suffices to prove limε→0+ ∆ε = 0 uniformly. Set M = 2 max
(
Lip( f ), ‖∇ f (x)‖, 1

)
, and

observe∣∣∆ε(e)− ∆ε(e′)
∣∣ 6 ε−1 ·

∣∣ f (x + εe)− f (x + εe′)
∣∣ + ‖∇ f (x)‖ · ‖e− e′‖ 6 M · ‖e− e′‖

for all e, e′ ∈ Sm−1 , ε > 0 .

Since Sm−1 is compact, there exists a finite subset E′ ⊂ E such that dist(e, E′) 6 ε
2M

for all e ∈ Sm−1 . Moreover, limε→0+ ∆ε(e) = 0 for all e ∈ E′ . Hence, there is δ > 0 such
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that |∆ε(e)| 6 ε
2 for all e ∈ E′ and 0 < ε 6 δ . For e ∈ Sm−1 , 0 < ε 6 δ , we have

|∆ε(e)| 6 mine′∈E′
[
|∆ε(e)− ∆ε(e′)|+ |∆ε(e′)|

]
6 mine′∈E′ M · ‖e− e′‖+

ε

2
6 ε ,

so limε→0+ ∆ε = 0 uniformly, and f is differentiable at x . �

Definition 3.3.2. Let (X, ‖xy‖) be a normed space, (Y, d) a metric space, U ⊂ X an open
subset, and f : U → Y . If x ∈ U and there exists a continuous seminorm p : X → R

such that
limy→x

1
‖y− x‖ ·

[
d( f (y), f (x))− p(y− x)

]
= 0 ,

then f said to be metrically differentiable at x . We point out that the continuity of p is
automatic if X is finite-dimensional.

Lemma 3.3.3. If f : U → Y and x ∈ U , then there is at most one seminorm p as in defi-
nition 3.3.2. If it exists, we denote it by | f ′|(x) . If f is metrically differentiable at x , then
it is continuous at x .

Proof. Let p : X → R fulfill the condition. Then fix y ∈ X . For all ε > 0 ,

p(y) = ‖y‖ · p(x + εy− x)
‖x + εy− x‖ ,

and therefore

p(y) = limε→0+
d
(

f (x + εy), f (x)
)

ε
.

Thus follows the uniqueness. The statement about continuity is trivial. �

Metric differentiability is closely related to the notion of weak differentiability.

Definition 3.3.4. Let (X, ‖xy‖) be a normed space, Y = E∗ a dual Banach space, U ⊂ X
an open subset, and f : U → Y . If x ∈ U and there exists a continuous linear map
L : X → Yσ such that

limy→x
1

‖y− x‖ ·
[

f (y)− f (x)− L(y− x)
]

= 0 in σ(Y, E) ,

then f is said to be weak∗ differentiable at x . The continuity of L is automatic if X is finite-
dimensional. Moreover, as above, L is unique if it exists, in which case we denote it by
f ′σ(x) . If f is weakly differentiable at x , then f : U → Yσ is continuous at x .

3.3.5. Let f : U → Y = E∗ be weakly and metrically differentiable at x ∈ U , where we
the metric d induced by the dual norm. We claim that

‖ f ′σ(x)v‖ 6 | f ′|(x)v for all v ∈ X .
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Indeed, since ‖y‖ = sup‖e‖61|〈e : y〉| for all y ∈ Y , ‖xy‖ is σ(Y, E)-l.s.c. Thus

‖ f ′σ(x)v‖ =
∥∥∥limε→0+

f (x + εv)− f (x)
‖x + εv− x‖

∥∥∥ 6 lim infε→0+
‖ f (x + εv)− f (x)‖

ε
= | f ′|(x)v

for all v ∈ X , ‖v‖ = 1 . The positive homogeneity of both sides of the inequality ensues
our statement.

The following theorem shows that this inequality is a.e. an equality.

Theorem (Ambrosio-Kirchheim) 3.3.6. Let E be a separable Banach space, Y = E∗ , and
f : Rm → Y be Lipschitz. Then for Lm a.e. x ∈ Rm , f is weakly and metrically differen-
tiable (w.r.t. the dual norm), and ‖ f ′σ(x)‖ = | f ′|(x) .

Proof. Let D ⊂ E be a dense countable-dimensional Q-subspace. By theorem 3.3.1, the
set N ⊂ Rm of all x ∈ R such that 〈ξ : f 〉 is not differentiable at x for some ξ ∈ D is Lm

negligible. Let A = Rm \ N and note

∣∣〈ξ : f 〉′(x)v
∣∣ = limε→0+

∣∣〈ξ : f (x + εv)− f (x)〉
∣∣

ε
6 Lip( f ) · ‖ξ‖ · ‖v‖ ,

so Rm × D → R : (v, ξ) 7→ 〈ξ : f 〉′(x)v is uniformly continuous for all x ∈ A . Thus,
there exists a continuous linear map ∇ f (x) : Rm → Y so that

〈ξ : ∇ f (x)v〉 = 〈ξ : f 〉′(x)v for all v ∈ Rm , ξ ∈ D .

By exactly the same argument as in the proof of Rademacher’s theorem, f is weakly
differentiable at every x ∈ A , and ∇ f (x) = f ′σ(x) . Moreover, as above, we have

‖ f ′σ(x)v‖ 6 lim infε→0+
‖ f (x + εv)− f (x)‖

ε
for all v ∈ Rm , x ∈ A .

It is clear that

〈ξ : ∇ f (x)v〉 = limε→0+
〈ξ : f (x + εv)− f (x)〉

ε
for all x ∈ A , v ∈ Rm , ξ ∈ D .

Define ∇ f = 0 on N . Let x ∈ A , v ∈ Rm , e ∈ E and ξ ∈ D . Then

∫ t

0

〈ξ : f (x + (ε + τ)v)− f (x + τv)〉
ε

dτ

=
1
ε
·
[∫ t+ε

t
〈ξ : f (x + τv)〉 dτ −

∫ ε

0
〈ξ : f 〉(x + τv) dτ

]
→ 〈ξ : f (x + tv)− f (x)〉 ,

as follows immediately from the continuity of f . Moreover, the integrand on the left
hand side has an integrable bound ( f is Lipschitz), so we may apply Lebesgue’s domi-
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nated convergence theorem 1.5.7 to achieve

〈ξ : f (x + tv)− f (x)〉 =
∫ t

0
〈ξ : ∇ f (x + τv)v〉 dτ ,

since x + τv ∈ A for a.e. τ ∈ [0, t] . In particular,

lim supt→0+
‖ f (x + tv)− f (x)‖

t
6 limt→0+

∫ t

0
‖∇ f (x + τv)v‖ dτ

By the Lebesgue-Besicovich differentiation theorem 1.9.9, shrinking A , we may assume
the right hand side is ‖∇ f (x)v‖ = ‖ f ′σ(x)v‖ , whence our claim. �

This result furnishes us with the following striking extension of Rademacher’s theorem.

Theorem (Rademacher-Ambrosio-Kirchheim) 3.3.7. Let f : Rn → X be Lipschitz where
(X, d) is metric. Then f is Ln a.e. metrically differentiable.

Proof. Since f (Rn) is separable, we may assume that this is the case with X , too. Thus
X may be considered as a subspace of `∞ = (`1)∗ . Now, theorem 3.3.6 applies. �

In fact, we can give a version of the mean value theorem. To that end, we give the
following definition.

Definition 3.3.8. Let X , Y be metric spaces and f : X → Y . An continuous increasing
function ω : [0, ∞[→ [0, ∞[ such that ω(0) = 0 , ω(x + y) 6 ω(x) + ω(y) for all x, y > 0 ,
and

d
(

f (x), f (y)
)

6 ω
(
d(x, y)

)
for all x, y ∈ X

is called a (global) modulus of continuity for f . Then f has a modulus of continuity if and
only if it is continuous.

Moreover, if E is normed, then on the set of seminorms on E , we introduce the metric

δ(p, q) = sup‖x‖61|p(x)− q(x)| for all seminorms p, q on E .

We note that δ(p, q) 6 ε is equivalent to |p(x)− q(x)| 6 ε‖x‖ for all x ∈ E .

Metric Mean Value Inequality (Kirchheim, Ambrosio-Kirchheim) 3.3.9. For any Lip-
schitz f : Rn → X , (X, d) metric,

limx 6=y,z→0
d
(

f (y), f (z)
)
− | f ′|(x)(y− z)

‖y− x‖+ ‖x− z‖ = 0 for Ln a.e. x ∈ Rn .

Moreover, there exists a countable compact family K such that | f ′|
∣∣ K is continuous for

each K ∈ K , and moduli of continuity for | f ′|
∣∣ K , ωK , such that∣∣d(

f (y), f (z)
)
− | f ′|(z)(y− z)

∣∣ 6 ωK
(
‖y− z‖

)
· ‖y− z‖ for all y ∈ Rn , z ∈ K ∈ K .
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Proof. By theorem 3.3.7, for Ln a.e. x ∈ Rn , | f ′|(x) exists. For each y ∈ Rn , | f ′|(xy)(y)
is Ln measurable. Since the unit ball of Rn is separable, it follows easily that | f ′| is Ln

measurable. By Lusin’s theorem 1.4.1, there exist a countable compact Ln almost cover
K of Rn , and such that | f ′|

∣∣ K is continuous for all K ∈ K . Moreover, by Egorov’s theo-
rem 1.4.4, we may assume limr→0+

1
r · d( f (x), f (x + ry)) = | f ′|(x)y uniformly in x ∈ K

and y ∈ B(0, 1) .

By corollary 1.9.10, we need only prove the assertion at points x of Ln density 1 for
some K ∈ K . Fix a density point x ∈ K and ε > 0 . Then there exists δ > 0 such that

B(x + rv, rε) ∩ K 6= ∅ for all ‖v‖ 6 ε−1 , 0 < r 6 δ . (∗)

By the uniformity of the above convergence, we may assume∣∣∣∣d
(

f (y + rv), f (y)
)

r
− | f ′|(y)v

∣∣∣∣ 6 ε2 for all y ∈ K , v ∈ B(0, 1) , 0 < r 6
2δ

ε
. (∗∗)

Since | f ′|
∣∣ K is continuous, we may also assume

δ
(
| f ′|(x), | f ′|(y)

)
6 ε2 for all y ∈ K , ‖x− y‖ 6 δ

(
ε + 1

ε

)
. (∗ ∗ ∗)

For u, v ∈ B
(
0, 1

ε

)
, u 6= v , there exists w ∈ K , ‖w− (x + rv)‖ 6 εr 6 δ

(
ε + 1

ε

)
. Thus,∣∣∣∣1

r
· d

(
f (x + ru), f (x + rv)

)
− | f ′|(x)(u− v)

∣∣∣∣
6

∣∣∣∣d
(

f (w + r(u− v)), f (w)
)

r
− | f ′|(x)(u− v)

∣∣∣∣
+

1
r
·
[
d
(

f (x + ru), f (w + r(u− v))
)
+ d

(
f (w), f (x + εv)

)]
;

now, we set z = u−v
‖u−v‖ , and hence,

6 ‖u− v‖ ·
[∣∣∣∣d

(
f (w + r‖u− v‖z), f (w)

)
r‖u− v‖ − | f ′|(w)z

∣∣∣∣ +
∣∣| f ′|(x)z− | f ′|(w)z

∣∣]
+

2 · Lip( f )
r

· ‖w− (x + rv)‖

6 2ε2 · ‖u− v‖+ 2ε · Lip( f ) 6 2
(
2 + Lip( f )

)
ε .

This gives the first assertion, setting y = x + ru , z = y + rv , since then r = ‖x− y‖ =
‖x− z‖ . The condition (∗∗) gives∣∣d(

f (y + δv), f (y)
)
− | f ′|(y)(y + δv− y)

∣∣ 6 ε2 · δ .

By (∗ ∗ ∗), ωK(δ) = ε2 is modulus of continuity for | f ′||K , hence the assertion. �
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3.3.10. The set of norms on Rn , endowed with the metric δ , is a separable metric space.
In fact, the set of all finite subsets of Qn is countable. Let p be a norm on Rn , and ε > 0 .
We assume, as we may, that r · ‖xy‖2 6 p 6 ‖xy‖2 . Choose x0, . . . , xN ∈ Qn , such that
{p = 1} ⊂ ⋃N

j=0 B(xj, ε) . Let B = co(±x0, . . . ,±xN) . Then B is convex and symmetric,
so the Minkowski gauge

q(x) = inf
{

t > 0
∣∣ t−1x ∈ B

}
for all x ∈ Rn

is a norm on Rn . By supplementing±xj by rational multiples of standard basis elements
ej , we may assume co(±e1, . . . ,±en) ⊂ B , so q 6

√
n‖xy‖2 . (Note p(±ej) 6 1 .) Let

0 < ‖x‖ 6 1 . Then for all j = 0, . . . , N ,

|p(x)− q(x)| = p(x) ·
∣∣∣∣1− q

(
x

p(x)

)∣∣∣∣ = p(x) ·
∣∣∣∣q(xj)− q

(
x

p(x)

)∣∣∣∣ 6
√

n ·
∥∥∥∥xj −

x
p(x)

∥∥∥∥ .

Since dist({x0, . . . , xN}, {p = 1}) 6 ε
r , we find δ(p, q) 6

√
nε
r .

Proposition 3.3.11. Let f : Rn → X be Lipschitz, λ > 1 . There exist disjoint Borel sets
Bj ⊂ Rn , such that

⋃∞
j=0 Bj is the set of points at which f is metrically differentiable and

| f ′| is a norm, and norms pj on Rn , such that

1
λ

pj(x− y) 6 d
(

f (x), f (y)
)

6 λ · pj(x− y) for all x, y ∈ Bj .

Proof. Let P be a dense countable subset of the set of all norms on Rn , and fix ε > 0 ,
such that 1

λ + ε < 1 < λ − ε . Let B be the Borel set of points at which f is metrically
differentiable. Then for x ∈ B , | f ′|(x) is a norm if and only if x ∈ ⋃

p∈P Bp where

Bp =
{

y ∈ B
∣∣ ∀ v ∈ Rn :

( 1
λ + ε

)
p(v) 6 | f ′|(y)v 6 (λ + ε)p(v)

}
.

Moreover, by the definition of metric differentiability, the Borel sets

Bp,k =
{

x ∈ Bp
∣∣ ∀ y ∈ B

(
x, 1

k

)
:

∣∣d( f (x), f (y))− | f ′|(x)(x− y)
∣∣ 6 ε · p(x− y)

}
for all p ∈ P , k ∈ N \ 0 , form a cover of B . For each (p, k) ∈ P × (N \ 0) , form a
countable disjoint Borel partition by sets Bpk` of diameter 6 1

k . Then, for x, y ∈ Bpk` ,

1
λ p(x− y) 6 | f ′|(x)(x− y)− εp(x− y) 6 d

(
f (x), f (y)

)
6 λp(x− y) ,

proving the assertion. �

Remark 3.3.12. Our presentation of Rademacher’s theorem 3.3.1 follows [Mat95], the
remainder of the subsection follows [AK00b] and [Kir94]
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4Rectifiability

4.1 Area Formula

Definition 4.1.1. Let 0 6 s < ∞ , V , W be a normed vector spaces and p : V → [0, ∞] a
sublinear functional. Define the s-Jacobian of p by

Js(p) =
ωs

Hs{p 6 1} ∈ [0, ∞] ,

Here, c
0 = ∞ and c

∞ = 0 for c > 0 , and the Hausdorff measure is defined w.r.t. the norm
on V . If L : V → W is linear, define the s-Jacobian of L by

Js(L) = Js(‖L‖) .

Proposition 4.1.2. Let k = dim U = dim V 6 dim W where U , V and W are normed.
Whenever S : U → V and T : V → W are linear,

Jk(T ◦ S) = Jk(T) · Jk(S) .

Proof. Since T(V) is contained in a k-dimensional subspace of W , we may assume
dim W = k . Moreover, we may assume U = V = W = Rk with possibly distinct
norms. Then for all x ∈ Rk , and r > 0

Jk(T) =
Hk(BW(0, 1)

)
Hk

(
T−1BW(0, 1)

) =
Hk(BW(x, r)

)
Hk

(
T−1BW(x, r)

) ,

by theorem 2.4.3. If Hk(T−1(BW(0, 1))
)

= ∞ , then since Hk(A(Rm)) = 0 for any m < k
and any linear A : Rm → Rk , we find T−1(B(0, 1)) = Rk ; in other words, T = 0 .
Otherwise, corollary 1.9.6 shows that Jk(T) · T(Hk) = Hk . Hence

Jk(S ◦ T) · (S ◦ T)(Hk) = Hk = Jk(S) · S(Hk) = Jk(S) · S
(
Jk(T) · T(Hk)

)
= Jk(S) · Jk(T) · S(T(Hk)) = Jk(S) · Jk(T) · (S ◦ T)(Hk) .

This proves the proposition. �

Area Formula 4.1.3. Let (X, d) be metric, f : Rn → X be Lipschitz, and A ⊂ Rn be Borel.
Then ∫

A
Jn

(
| f ′|(x)

)
dLn(x) =

αn

ωn
·
∫

X
N

(
f

∣∣ A, y
)

dHn
d(y)

where αn = Ln(
B(0, 1)

)
. Moreover, Jn(| f ′|(x)) = 0 for Ln a.e. point x at which | f ′|(x) is

not a norm.

Remark 4.1.4. As a corollary, we shall prove αn = ωn .
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We first note the following simple lemma.

Lemma 4.1.5. Let E be normed, 0 6 s < t < ∞ and f : E →]0, ∞[ be positively homoge-
neous. Then

limε→0+

∫
{ε6 f <1}

f−t dHs = ∞ .

Proof. If g > 0 is any integrable simple function, then for all λ > 0 ,∫
g(λx) dHs(x) = ∑

06y6∞
yHs(λ−1g−1(y)

)
= λ−s ·

∫
g(x) dHs(x) .

Hence, the corresponding formula is true for any positive function in place of g . Define
sets Aj = {2−(j+1) 6 f < 2−j} . Then Aj = 2Aj+1 since f is positively homogeneous,
and we deduce∫

Aj

f−t Hs = 2−t
∫

1Aj+1

( x
2

)
f
( x

2

)−t Hs(x) = 2s−t ·
∫

Aj+1

f−t Hs .

Therefore,

∫
{2−j6 f <1}

f−t dHs =
j−1

∑
k=0

∫
Aj

f−t dHs

=
∫
{1/26 f <1}

f−t dHs ·
j−1

∑
k=0

2k(t−s) =
2j(t−s) − 1
2t−s − 1

·
∫
{1/26 f <1}

f−t dHs ,

which tends to infinity for j → ∞ . �

Proof of theorem 4.1.3. We first assume that for any x ∈ A , | f ′|(x) exists and Jn
(
| f ′|(x)

)
is a norm. Let τ > 1 . By proposition 3.3.11, there exist countable Borel partitions Pj of
A , limj sup{diam B|B ∈ Pj} = 0 , and norms ‖xy‖B , B ∈ Pj , on Rn such that

τ−1 · ‖x− y‖B 6 d
(

f (x), f (y)
)

6 τ · ‖x− y‖B for all x, y ∈ B ∈ Pj .

This implies, on the one hand,

1
τ
· ‖y‖B =

1
τr
· ‖x− (x + ry)‖B 6 | f ′|(x)y = limr→0+

d
(

f (x), f (x + ry)
)

r
6 τ · ‖y‖B

whenever x ∈ B is an Ln density point, and on the other hand,

τ−n · Hn
‖xy‖B

(C ∩ B) 6 Hn
d
(

f (C ∩ B)
)

6 τn · Hn
‖xy‖B

(C ∩ B) for all C ⊂ A .

The first estimate gives

Jn(‖xy‖B) =
ωn

Hn{‖xy‖B 6 1} >
ωn

Hn{| f ′|(x) 6 τ} = τ−n · Jn
(
| f ′|(x)

)
for Ln a.e. x ∈ B
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and similarly Jn
(
| f ′|(x)

)
> τ−n · Jn(‖xy‖B) for Ln a.e. x ∈ B . Set αn = Ln(

B(0, 1)
)

; then

τ−2n
∫

B
Jn

(
| f ′|

)
dLn 6 τ−n

∫
B

Jn(‖xy‖B) dLn =
τ−n ·ωn

Hn{‖xy‖B 6 1} · L
n(B)

=
τ−n ·ωn · Ln{‖xy‖B 6 1}
Hn{‖xy‖B 6 1} ·ωn

· Hn
‖xy‖B

(B) =
τ−n · αn

ωn
· Hn

‖xy‖B
(B)

6
αn

ωn
· Hn

d
(

f (B)
)

=
αn

ωn
·
∫

1 f (B) dHn
d 6

τ2n · αn

ωn
·
∫

B
Jn

(
| f ′|

)
dLn ,

where theorem 2.4.3 was employed. As in the proof of theorem 2.2.2, we find

gj = ∑B∈Pj
1 f (B) 6 gj+1 → N( f |A, xy) ,

so corollary 1.5.6 gives the equation.

Since | f ′|(x) exists for a.e. x ∈ Rn , and both sides of the equation equal zero for
Ln negligible A , it remains to prove that both sides vanish for any A such that for each
x ∈ A , | f ′|(x) exists, but is not a norm. To that end, factor f = π ◦ fε where ε > 0 ,

fε : Rn → X ×Rn : x 7→
(

f (x), εx
)

and π = pr1 : X ×Rn → X .

If we consider the box metric on X ×Rn , then fε is L = Lip( f ) Lipschitz for ε 6 L and
π is 1 Lipschitz. Hence,∫

N
(

f
∣∣ B

)
dHn 6 Hn(

fε(B)
)

for all B ∈ B(X) , B ⊂ A ,

by theorem 2.2.2. (Since f (Rn) is separable, there is no loss in generality to assume X
separable.) Choosing Borel partitions as above, we find∫

N
(

f
∣∣ A

)
dHn 6

∫
N

(
fε

∣∣ A
)

dHn =
ωn

αn
·
∫

A
Jn

(
| f ′ε |

)
dLn ,

where the first part is applicable since | f ′ε |(x) = max
(
| f ′|(x), ε · ‖xy‖2

)
is a norm when-

ever it exists. Thus, | f ′| 6 | f ′ε | . Hence, both sides of the equation vanish as soon as

limε→0+ Jn
(
| f ′ε |(x)

)
= 0 for all x ∈ A .

To prove this statement, let u ∈ Sn−1 be such that | f ′|(x)u = 0 . Then define

p± : C = B(0, 1) ∩ u⊥ → Sn−1 : y 7→ y±
√

1− ‖y‖2 · u so that Sn−1 = p+(C) ∪ p−(C)

with Hn−1(p+(C) ∩ p−(C)) = 0 . Then

‖p±(x)− p±(y)‖2 = ‖x− y‖2 +
(√

1− ‖x‖2 −
√

1− ‖y‖2
)2

> ‖x− y‖2 ,
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which implies Hn−1(p±(B)) > Hn−1(B) for all Borel sets B ⊂ C . Furthermore,

| f ′|(x)
(

p±(y)
)

6 | f ′|(x)y +
√

1− ‖y‖2 · | f ′|(x)u = | f ′|(x)y

6 | f ′|(x)
(

p±(y)
)
+

√
1− ‖y‖2 · | f ′|(x)u = | f ′|(x)

(
p±(y)

)
.

Thus, | f ′|(x)
(

p±(y)
)

= | f ′|(x)y . Because Lip(| f ′ε |) 6 max(L, ε) = L , we may estimate

2nLωn−1

ωn
· Hn{| f ′ε |(x) 6 1} >

∫
Sn−1

[| f ′|(x)y]−n Hn−1(y)

= ∑
ε2=1

∫
pε(C)

min
(
(| f ′|(x)p−1

ε (y))−n, ε−n)
dHn−1(y)

> 2
∫

C
min

(
(| f ′|(x)y)−n, ε−n)

dHn−1(y)

> 2
∫

C
min

(
(L‖y‖)−n, ε−n)

dHn−1(y) >
2
Ln

∫{
ε
L 6‖xy‖61

}‖xy‖−n dHn−1 ,

by corollary 2.4.6 and theorem 2.2.2. Hence, for some R > 0 ,

limε→0+ Jn
(
| f ′ε |(x)

)
= limε→0+

ωn

Hn{| f ′ε |(x) 6 1}

6 R · limε→0+

(∫
{ε/L6‖xy‖61}

‖xy‖−n dHn−1
)−1

= 0 ,

by lemma 4.1.5, proving the theorem. �

We obtain the following rather general change of variables formula.

Corollary 4.1.6. Let (X, d) be metric, f : Rn → X be Lipschitz, and consider Hn = Hn
d .

(i). If g : Rn → R̄ is Borel, then∫
Rn

g(x)Jn
(
| f ′|(x)

)
dLn(x) =

αn

ωn
·
∫

X
∑ f (x)=y g(x) dHn(y) ,

provided one the integrals exists.

(ii). If h : X → R̄ and A ⊂ R are Borel, then∫
A

h
(

f (x)
)
Jn

(
| f ′|(x)

)
dLn(x) =

αn

ωn
·
∫

X
h(y)N

(
f

∣∣ A, y
)

dHn(y) ,

provided one of the integrals exists.

Proof of (i). First, let g > 0 . By lemma 1.3.3, we obtain by pyramidal approximation a
sequence (Ak) of Borel sets, and constants ak > 0 such that g = ∑∞

k=0 ak1Ak . By corol-
lary 1.5.6 and theorem 4.1.3,

∫
Rn

g · Jn
(
| f ′|

)
dLn =

∞

∑
k=0

ak

∫
Ak

Jn
(
| f ′|

)
dLn
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=
αn

ωn
·

∞

∑
k=0

ak

∫
X

N
(

f
∣∣ Ak, xy

)
dHn =

αn

ωn
·
∫

X
∑ f (y)=x g(x) dHn(y) ,

since ∑ g
(

f−1(y)
)

= ∑∞
k=0 ak · #

(
Ak ∩ f−1(y)

)
. The general case now follows by defini-

tion of
∫

, writing g = g+ − g− .

Proof of (ii). This follows form (i), applied to the function g = 1A · h ◦ f . �

In order to give some applications of these formulae, we need to find computable ex-
pressions for the Jacobian. We give some expressions in the Euclidean setup, which also
link the above results to the more familiar Euclidean change of variables formula.

Proposition 4.1.7. Let L : Rn → Rm be linear. Then Jn(L) = 0 for n > m , and for n 6 m ,

Jn(L) = |det S| where L = OS ,

S = S∗ (S is symmetric), and O∗O = 1 (O is an isometry). In particular, in this case,

Jn(L) =
√

det(L∗L) .

Moreover, we have ωn = αn = Ln(
B(0, 1)

)
.

Proof. We have Jn(L) = Jn(|L′|(x)) for all x , and the latter vanishes for Ln a.e. x for
which ‖L‖ is not a norm, by theorem 4.1.3. Thus, we may assume that L is injective,
which implies n 6 m . Then let L = OS . By theorem 4.1.3 again,

Jn(L) = Jn(L) · Ln(
[0, 1]n

)
=

αn

ωn
· Hn(

L([0, 1]n)
)

=
αn

ωn
· Hn(

S[0, 1]n
)

.

The matrix S is symmetric and therefore orthogonally equivalent to some diagonal ma-
trix D = diag(λ1, . . . , λn) , so

|det(S)| = |λ1 · · · λn| = Ln(
D([0, 1]n)

)
=

αn

ωn
· Hn(

D[0, 1]n
)

=
αn

ωn
· Hn(

S([0, 1]n)
)

,

by theorem 2.4.3. Moreover, L∗L = SO∗OS = S2 , and

Jn(L)2 = det(S)2 = det(L∗L) ,

proving the second claim.
Now, to prove that Ln(

B(0, 1)
)

= ωn , define f : [0, ∞[×[−π, π]×
[
−π

2 , π
2

]
→ Rn by

f (r, ϑ1, . . . , ϑn−1) =
(
r cos ϑn−1 · · · cos ϑ1, r cos ϑn−1 · · · cos ϑ2 sin ϑ1, . . . , r sin ϑn−1

)
is differentiable and an immersion at Ln a.e. x , and

det f ′(r, ϑ) = rn−1 · cosn−2 ϑn−1 · · · cos ϑ2 .
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Hence, setting Q = [0, 1]× [−π, π]× [−π/2, π/2]n−2 ,

ωn = Hn(
B(0, 1)

)
=

ωn

αn
·
∫

Q
Jn( f ′) dLn =

ωn

αn
·
∫

Q
|det f ′| dLn ,

by the above computation and the area formula 4.1.3, and this gives

αn =
2π

n
·

n−2

∏
j=1

∫ π/2

−π/2
cosj(x) dx = ωn .

Thus, Ln(
B(0, 1)

)
= αn = ωn . �

4.1.8. We can now give some applications. If γ : R → Rn is Lipschitz and injective (more
generally: the set of double points in γ(R) isH1 negligible), then the curve Ct = γ([0, t])
has length

`(t) = H1(Ct) =
∫ t

0
‖γ̇‖ dL1 .

In particular, if γ̇(t) 6= 0 for L1 a.e. t ∈ R , then ` is a strictly increasing function which
can be inverted on I = `(R) . If ‖γ̇‖ is locally summable, then ` is continuous and I
is an interval containing 0 . We may then reparametrise the curve by arc length, i.e. the
function defined by $(r) = γ(`−1(r)) for r ∈ I is continuous, and Ct = $([0, `(t)]) .

Generalising the first example, let f : Rn → Rm be an injective Lipschitz map, e.g. the
local chart of an embedded submanifold. Then

f ′(x)∗ f ′(x) = G(x) =
(
(∂i f (x)|∂j f (x))

)
16i,j6n ,

and thus g = det G = Jn(| f ′|)2 . We find the volume of M = f (A) , A ⊂ Rn Borel,

Hn(M) =
∫

A

√
g dLn .

In particular, if m = 1 and f (x) = (x, h(x)) , the surface area of the graph is

Hn(
Gr(h|A)

)
=

∫
A

√
1 + ‖h′‖2 dLn .

For the latter statement, we have used the Binet-Cauchy formula

det(L∗L) = ∑
16k1<···<kn6m

det(`ik j)16i,j6n for all L = (`ij) ∈ Rn×m .

The formula is valid for any n and m , both sides vanishing for n > m .

Remark 4.1.9. The presentation of the material in this subsection follows [AK00b], al-
though the proofs are from [Kir94], with the necessary modifications to make them in-
dependent from the Euclidean change of variables formula.
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4.2 Rectifiable Sets and Measures

In the following, let X be a metric space. Often, we shall assume that X be separable
and/or complete.

Definition 4.2.1. Let A ∈ B(X) . We say that A is countably k-rectifiable if there exist Borel
sets Aj ⊂ Rk and Lipschitz functions f j : Aj → X such that Hk(A \⋃∞

j=0 f j(Aj)
)

= 0 .
A finite Borel measure µ on X is called k-rectifiable if µ is concentrated on a separable

subset and µ = ϑ · Hk A for some countably k-rectifiable Borel A ⊂ X and some Borel
function ϑ : A →]0, ∞[ .

Remark 4.2.2.

(i). Countably rectifiable sets are closed under countable unions.

(ii). If X ⊂ Y where Y is metric and X is Borel in Y , then A ∈ B(X) is countably
rectifiable in X if and only this is the case in Y . Indeed, Hausdorff measure on Y restricts
to Hausdorff measure on X .

(iii). Clearly, If X is a Hilbert space, separable, or otherwise isometrically embedded
into `∞ , we may replace f j : Aj → X in the definition by f j : Rk → X or even a single
Lipschitz f : Rk → X , by theorem 3.1.1 and proposition 3.1.5.

(iv). By proposition 1.2.2 and theorem 1.2.5, µ is automatically concentrated on a sep-
arable subset if X is σ-compact or contains a dense subset whose cardinality is an Ulam
number.

Lemma 4.2.3. Let A ⊂ X be countably k-rectifiable. Then there exist a countable compact
family K ⊂ P(Rk) and bi-Lipschitz maps fK : K → f (K) ⊂ A such that fK(K) are
pairwise disjoint and Hk(A \⋃

K∈K fK(K)
)

= 0 .

Proof. Let Aj ⊂ Rk be Borel, f j : Aj → X be Lipschitz, such that

Hk(A \
∞⋃

j=0

f (Aj)
)

= 0 .

Let Bj be the set of x ∈ Aj such that | f ′j |(x) exists and is not a norm. Then

Hk( f j(Bj)) 6
∫

N( f j|Bj, xy) dHk =
∫

Jn(| f ′j |) dLk = 0 ,

by the area formula 4.1.3. Thus, shrinking Aj , we may assume that | f ′j |(x) is a norm
whenever it exists. By proposition 3.3.11, by further subdividing the Aj , we may assume
that the f j are bi-Lipschitz onto their images.

Now, define Borel sets Cj by

Cj = Aj \ f−1
j

(
A ∩

⋃
i<j

fi(Ai)
)

for all j ∈ N .
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Then f j(Cj) ⊂ A are pairwise disjoint and Hk almost cover A . Almost covering Cj by
countably many disjoint compacts (theorem 1.1.9 (iii)) changes the image f j(Cj) only by
a zero set (theorem 2.2.2). �

Definition 4.2.4. Let E be a separable Banach space, Y = E∗ , S ∈ B(Y) , S = f (B) for
some B ∈ B(Rk) and a Lipschitz map f : Rk → Y such that f |B is injective. Then, for any
y = f (x) ∈ S such that f is metrically and weak∗ differentiable at x , with Jk( f ′σ(x)) > 0 ,
define the approximate tangent space of S at x by

Tank(S, y) = f ′σ(Rk) .

If S is countably Hk-rectifiable, Hk(S \⋃
i fi(Bi)

)
= 0 , where fi : Bi → Y are bi-Lipschitz

onto their images, then define the approximate tangent space by

Tank(S, y) = Tank( fi(Bi), y) for all y ∈ S ∩ fi(Bi) .

We need to see that this definition is well-posed, and moreover, a.e. independent of the
choice of parametrisations.

Lemma 4.2.5. Let Sj = f j(Bj) ∈ B(Y) , f j ∈ Lip(Rk, Y) , such that f j|Bj are injective,
j = 1, 2 . Then

Tank(S1, y) = Tank(S2, y) for Hk a.e. y ∈ S1 ∩ S2 .

The conclusion holds also for any pair of countably k-rectifiable sets Sj , j = 1, 2 .

Proof. Let K ⊂ S1 ∩ S2 be closed. We prove ⊂ for HK a.e. y ∈ K . Then the statement
follows by symmetry and inner regularity.

Thus, set Kj = Bj ∩ f−1
j (K) . Moreover, let K′

j be the subset of Lk density points for
Kj , at which f j is metrically and weak∗ differentiable, with non-vanishing Jacobian. We
will prove ⊂ at any y ∈ K′ = f1(K′

1) ∩ f2(K′
2) .

Let y = f1(u) = f2(v) ∈ K′ . Since u is an Lk density point for K1 , there is an
orthonormal basis e1, . . . , ek of Rk and a sequence tm → 0+ such that u + tmei ∈ K1 for all
i = 1, . . . , k , m ∈ N . Fix 1 6 i 6 k , and let um = u + tmei → u . Then ym = f1(um) → y ,
and we may assume (possibly passing to a subsequence) that for vm = f−1

2 (ym) , the
sequence ‖v− vm‖−1 · (v− vm) converges to some e ∈ Sk−1 . (Note that um 6= u implies
ym 6= y , which implies vm 6= v .)

Now, in the σ(Y, E) topology,

f ′1σ(u)ei = limm→∞
ym − y

tm

= limm→∞
‖ym − y‖

tm
· ‖vm − v‖
‖ f2(vm)− f2(v)‖ ·

f2(vm)− f2(v)
‖vm − v‖ =

| f ′1σ|(u)ei

| f ′2σ(v)e| · f ′2σ(v)e ,

so f ′1σ(y)ei ∈ Tank(S2, y) . Since i was arbitrary, the assertion follows. �
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Similar arguments give the following more intrinsic characterisation of the approximate
tangent space (by secant vectors).

Proposition 4.2.6. Let S ∈ B(Y) be countably k-rectifiable. Then there is a countable
Borel Hk almost cover (Sk) of S such that for all k ,

Tank(Sk, y) ∩ S(Y) =
{

v ∈ Y
∣∣∣∣ ∃um ∈ Sk : v = limm

um − y
‖um − y‖ in Yσ

}
for Hk a.e. y ∈ Sk , where S(Y) is the unit sphere of Y = E∗ .

The following proposition enables us to define the approximate tangent space indepen-
dent of a particular embedding into a dual Banach space (see below).

Proposition 4.2.7. Let S ⊂ Y = E∗ be countably k-rectifiable, and Hk(S) < ∞ . For
Hk a.e. y ∈ S , there exist a Borel Sy ⊂ Y , such that Θ∗(S \ Sy, y) = 0 , and a weakly
continuous map πy : Y → Tank(S, y) such that πy|Tank(S, y) = id , and

limr→0+ sup
{∣∣∣∣‖πy(u− v)‖

‖u− v‖ − 1
∣∣∣∣ ∣∣∣∣ u 6= v , u, v ∈ B(y, r) ∩ Sy

}
= 0 .

Proof. W.l.o.g., let S ⊂ f (Rk) for some Lipschitz map f : Rk → Y . Let a countable Borel
partition (Bi) of the set of points in Rk be given at which f is weak∗ and metrically dif-
ferentiable, and the Jacobian is non-vanishing, such that f |Bi is bi-Lipschitz onto fi(Bi)
for all i (proposition 3.3.11). Let (Kj) be a countable family of compacts, such that∣∣‖ f (u)− f (v)‖ − | f ′|(v)(u− v)

∣∣ 6 ωj(‖u− v‖) · ‖u− v‖ for all u ∈ Rk , v ∈ Kj ,

where ωj are moduli of continuity for | f ′||Kj , by the metric mean value inequality (theo-
rem 3.3.9). Let Sij = f (Bi ∩ Kj) . By the area formula (theorem 4.1.3), the set of all
y = f (x) such that Jk(| f ′|(x)) = 0 is Hk negligible, so (Sij) Hk almost covers S .

Let y = f (x) ∈ Sij . Then f ′σ(x) is injective, and Tank(S, y) is k-dimensional. Then the
weakly continuous projection πy is obtained by choosing a basis u1, · · · , uk of Tank(S, y)
and the dual basis 〈um : νn〉 = δmn . There exist weakly continuous extensions µn ∈
(Yσ)∗ = E of νn by the Hahn-Banach theorem. Then πy(u) = ∑k

m=1〈u : µn〉 · um gives the
desired map.

By corollary 2.3.5, for any fixed i, j , Hk a.e. z ∈ Sij satisfies Θ∗
k (S \ Sij, z) = 0 . Then

the assertion will follow for Sy = Sij as soon as we have established the convergence
statement for each of these sets.

Since fi|Bi is bi-Lipschitz, the convergence will follow from

limr→0+ sup
{∣∣∣∣ | f ′|(x)(u− v)
‖ f (u)− f (v)‖ − 1

∣∣∣∣ ∣∣∣∣ u 6= v , u, v ∈ B(x, r) ∩ Bi ∩ Kj

}
= 0
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and

limr→0+ sup
{∣∣∣∣ ‖ f ′σ(x)(u− v)‖∥∥πy

(
f (u)− f (v)

)∥∥ − 1
∣∣∣∣ ∣∣∣∣ u 6= v , u, v ∈ B(x, r) ∩ Bi ∩ Kj

}
= 0

The first of these two statements follows from∣∣∣∣ | f ′|(x)(u− v)
‖ f (u)− f (v)‖ − 1

∣∣∣∣ 6 ωj(‖u− v‖) · ‖u− v‖
‖ f (u)− f (v)‖ for all u 6= v , u, v ∈ Bi ∩ Kj ,

since f |Bi is bi-Lipschitz. Similarly, for the second,∣∣∣∣ ‖ f ′σ(x)(u− v)‖∥∥πy
(

f (u)− f (v)
)∥∥ − 1

∣∣∣∣ 6

∥∥πy
(

f ′σ(x)(u− v)− f (u) + f (v)
)∥∥∥∥πy

(
f (u)− f (v)

)∥∥ . (∗)

Now, ‖πy(xy)‖ is weakly l.s.c., so

limr→0+ supu 6=v , u,v∈B(x,r)

∥∥πy
(

f ′σ(x)(u− v)− f (u) + f (v)
)∥∥

‖u− v‖ = 0 .

Moreover, for any sequence (um, vm) → (x, x) , um 6= vm , um, vm ∈ Bi ∩ Kj , such that
um−vm
‖um−vm‖ converges to some e ∈ Sm−1 , we find

limm→∞
f (um)− f (vm)
‖um − vm‖

= f ′σ(x)e in Yσ .

Thus, again using the weak∗ lower semicontinuity of ‖πy(xy)‖ ,

lim infr→0+ infu 6=v , u,v∈B(x,r)

∥∥πy
(

f (u)− f (v)
)∥∥

‖u− v‖ > infe∈Sk−1‖πy( f ′σ(x)e)‖

= infe∈Sk−1‖ f ′σ(x)e‖ > 0 .

Hence, the right hand side of (∗) is the product of a bounded term and a term converging
to zero, so the assertion follows. �

Definition 4.2.8. Given a metric space X and a countably k-rectifiable S ∈ B(X) , fix an
isometric embedding j : S → Y = E∗ , E a separable Banach space. Define

Tank(S, x) = Tank(j(S), j(x)) for all x ∈ S for which this make sense.

Then Tank(S, x) is well-defined up to isometries Hk a.e., by propositions 4.2.6 and 4.2.7.

We round off the section with characterisations of rectifiability for sets and measures.

Definition 4.2.9. Let E, F be Banach spaces. Consider the weak Grassmannian variety

Πk(E∗, F) =
{

L : E∗ → Y
∣∣ L linear,weak∗ continuous, rk L = k

}
.
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Define a pseudometric γ on Πk(E∗, F) by

γ(L, L′) = sup
{
|L(x)− L′(x)|

∣∣ x ∈ E∗ , ‖x‖ 6 1
}

.

Here, recall that a pseudometric is a function satisfying all the axioms of a metric save
the separation axiom. Of course, a pseudometric induces a (usually non-Hausdorff)
topology in the same way as does a metric. The following lemma shall be useful.

Lemma 4.2.10. If E is separable, then so is Πk(E∗, F) , in the topology induced by γ .

Proof. Any L ∈ Πk(E∗, F) may be factored through Rk . The proof uses the separability
of E and of the set of norms (i.e. closed convex symmetric neighbourhoods of 0) in Rk ,
cf. 3.3.10. For details, we refer to [AK00b, lem. 6.1]. �

Proposition 4.2.11. Let E be a separable Banach space, and S ⊂ Y = E∗ a separable
subset. If, for each x ∈ S , there are εx, rx > 0 , and πx ∈ Πk(Y, Y) such that∥∥πx(y− x)

∥∥ > εx‖y− x‖ for all y ∈ B(x, rx) ∩ S ,

then there exist Lipschitz functions fm : Rk → Y , such that S ⊂ ⋃∞
m=0 fm(Rk) . In

particular, if S is Borel, then it is countably k-rectifiable.

Proof. Let Sn =
{

x ∈ S
∣∣ min(εx, rx) > 1

n

}
. Then S =

⋃∞
n=0 Sn . Select a dense sequence

(πm) ⊂ Πk(Y, Y) , by lemma 4.2.10. Define

Snm =
{

x ∈ Sn

∣∣∣∣ γ(πx, πm) <
1

2n

}
and Vm = πm(Y) .

Note that Vm spans a k-dimensional subspace of Y , and is thus contained in the image
of a linear (and hence Lipschitz) function Rk → Y .

Now, let Snm =
⋃∞

`=0 Snm` where diam Snm` < 1
n (S is separable). If u, v ∈ Snm` , then

∥∥πm(u− v)
∥∥ >

∥∥πv(u− v)
∥∥− 1

2n
· ‖u− v‖ >

1
2n

· ‖u− v‖ ,

so πm : Snm` → Vm is bi-Lipschitz onto its image. By proposition 3.1.5, there exists a
Lipschitz function fnm` : Rk → Y containing Snm` in its image. �

Proposition 4.2.12. Let µ be a finite Borel measure on Y = E∗ , E separable. Then µ is
k-rectifiable if and only if for µ a.e. x ∈ X ,

(i). we have
0 < Θk∗(µ, x) 6 Θ∗

k (µ, x) < ∞ , and

(ii). there exist εx > 0 and πx ∈ Πk(Y, Y) such that for

Cx =
{

y ∈ Y
∣∣ ∥∥πx

(
y− x

)∥∥ 6 εx · ‖x− y‖
}

,

we have Θk(µ Cx, x) = 0 .
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Proof. Because Y has no isolated points, the lower density condition shows that µ is
concentrated on a Borel set S σ-finite w.r.t. Hk , by theorem 2.3.3. Similarly, the upper
density condition shows that µ is absolutely continuous w.r.t. Hk S . Then the asser-
tion follows from theorem 1.9.5 as soon as we can prove that S is countably k-rectifiable.

To that end, it suffices to verify the assumptions of proposition 4.2.11 the sets

Sδ =
{

x ∈ S
∣∣∣∣ ∀0 < r 6 δ :

µ
(

B(x, r)
)

rk > δ

}
defined for δ > 0 . To that end, fix x ∈ Sδ , and γ ∈]0, 1[ , so that

εx

2
+ γ · ‖πx‖ 6 εx · (1− γ) .

We claim that for y sufficiently close to x , we have

2 ·
∥∥πx

(
y− x

)∥∥ > εx · ‖y− x‖ . (∗)

Indeed, for any z ∈ B(y, γ · ‖y− x‖) , we have

‖y− x‖ 6 ‖y− z‖+ ‖z− x‖ 6 γ · ‖y− x‖+ ‖z− x‖ ,

so ‖y− x‖ 6 1
1−γ · ‖z− x‖ . Let r = ‖y− x‖ . Whenever (∗) fails, we find

‖πx(z− x)‖ 6 ‖πx(y− x)‖+ ‖πx(z− y)‖

6
εxr
2

+ ‖πx‖ · ‖z− y‖ 6
(

εx

2
+ γ‖πx‖

)
· r 6 εx · ‖z− x‖ .

Hence, B(y, γr) ⊂ Cx . Thus, if (∗) fails for arbitrarily small r , we find

δγk 6
µ
(

B(x, γr)
)

rk 6
µ
(

B(x, r)
)

rk → 0 ,

a contradiction! Hence, (∗) holds for y close to x , the required condition. �

4.3 Tangential differential and general area formula

The next natural step in our attempt to reconstruct the elements of differential geome-
try in a purely measurable metric setup is to remove the explicit reference to Lipschitz
parametrisations.

Theorem 4.3.1. Let Y = E∗ and Z = F∗ be duals of seperable Banach spaces, S ⊂ Y
countably k-rectifiable, g : S → Z Lipschitz, and µ = ϑ · Hk S , where ϑ : S →]0, ∞[
is an Hk summable function. Then, for Hk a.e. x ∈ S , there exist a continuous linear
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Lx : Yσ → Zσ and a Borel Sx ⊂ S such that

Θ∗
k (µ Sx, x) = 0 and limS\Sx3y→x

dσ

(
g(y), g(x) + Lx(y− x)

)
‖y− x‖ = 0 ,

dσ denoting the canonical metric defining the σ(Z, F) topology on the unit ball of Z ,
cf. 3.1.7.

Moreover, Lx is uniquely determined on Tank(S, x) . Writing dSg(x) = Lx|Tank(S, x) ,
this tangential differential is characterised by

(g ◦ h)′σ(a) = dSg
(
h(a)

)
◦ h′σ(a) for Lk a.e. a ∈ A ,

and every Lipschitz h : A → S , where A ⊂ Rk .

Proof. Up to Hk negligible sets, we write S =
⋃∞

i=0 f (Bi) where f : Rk → Y is Lips-
chitz, f |Bi is bi-Lipschitz with non-vanishing Jacobian, and metrically and weak∗ dif-
ferentiable. Also assume that g ◦ f is weak∗ differentiable on each of the Bi . Fix any
y = f (x) ∈ f (Bi) , and define Ly on Tank( f (Bi), f (x)) by

Ly
(

f ′σ(x)u
)

= (g ◦ f )′σ(x)u for all u ∈ Rk ,

and applying the projection πy from proposition 4.2.7. The statement follows from the
non-trivial density result [Kir94, th. 5.4.]. �

Definition 4.3.2. Let X, Y be separable metric spaces, S ⊂ X countably k-rectifiable, and
g : S → Y Lipschitz. Choose isometries jX : X → E∗ and jY : Y → F∗ where E, F are
separable Banach spaces. Then define Jacobian of g by

Jk(dSg)(x) = Jk(djX(S)(jY ◦ g ◦ j−1
X )(jX(x))) for all x ∈ S

where this makes sense. That this isHk a.e. well-defined is part of the following theorem.

General Change of Variables Formula 4.3.3. Let g : X → Y be Lipschitz, where X and
Y are separable, and S ⊂ X be countably k-rectifiable.

(i). The Jacobian Jk(dSg) is Hk a.e. well-defined.

(ii). For all Borel maps ϑ : S → [0, ∞] , we have∫
S

ϑ · Jk(dSg) dHk =
∫

Y
∑

x∈S∩g−1(y)
ϑ(x) dHk(y) .

(iii). For all A ∈ B(X) and all Borel functions ϑ : Y → [0, ∞] , we have∫
A

ϑ(g(x)) · Jk(dSg)(x) dHk(x) =
∫

Y
ϑ(y)N(g|A, y) dHk(y) .
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Proof. Claim (ii) follows from (iii) in the usual way. Moreover, the right hand side in (iii)
is independent of embeddings, so (i) also follows from (iii) one this has been established
for an arbitrary embedding. By σ-additivity, we may assume S ⊂ f (Rk) where f is bi-
Lipschitz and has non-vanishing Jacobian. Then the defining equation for the tangential
differential, the chain rule for the Jacobian, and the change of variables formula (corol-
lary 4.1.6) give∫

A
ϑ(g(x))Jk(dSg)(x) dHk(x) =

∫
A

ϑ(g(x))Jk((g ◦ f )′σ( f−1(x)))Jk( f ′σ( f−1(x)))−1 dHk(x)

=
∫

f−1(A)
ϑ(g( f (x)))Jk((g ◦ f )′σ(x)) dLk(x)

=
∫

Y
ϑ(y)N(g ◦ f | f−1(A), y) dHk(y) ,

whence the assertion, since N(g|A, y) = N(g ◦ f | f−1(A), y) , f being injective. �

Remark 4.3.4. The main body of this section follows [AK00b], with some aspects derived
from [Kir94], and lemma 4.2.3 being [AK00a, lem. 4.5].
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5Currents

5.1 Metric Functionals

In the following, let (X, d) be a metric space; usually, we shall assume X to be complete.

Definition 5.1.1. Denote by Lip(X) the set of all Lipschitz functions X → R , and by
Lipb(X) the set of all bounded Lipschitz maps. Let Dk(X) = Lipb(X) × Lip(X)k for
all k ∈ N , and MFk(X) be the set of maps T : Dk(X) → R such that |T| is positively
homogeneous and subadditive in each variable. The elements of MFk(X) are called k-
dimensional metric functionals.

Elements ω = ( f , π1, . . . , πk) ∈ Dk(X) shall be denoted ω = f dπ1 ∧ · · · ∧ dπk or
even f dπ where π = (π1, . . . , πk) . In the sequel, it shall be become clear why this
notation is justified.

The exterior differential is the degree 1 linear endomorphism d of the graded vector
space D•(X) = ∑⊕∞

k=0 Dk(X) , defined by

d
(

f dπ1 ∧ · · · dπk
)

= d f ∧ dπ1 ∧ · · · ∧ dπk .

The boundary operator is the dual degree −1 linear endomorphism of the graded vector
space MF•(X) = ∑⊕∞

k=0 MFk(X) , defined by

〈ω : ∂T〉 = 〈dω : T〉 for all ω ∈ Dk(X) , T ∈ MFk+1(X) , k > 0 .

Assume ϕ : X → Y is Lipschitz. Then the pullback along ϕ is the degree 0 linear map
ϕ• : D•(Y) → D•(X) defined by

ϕ•
(

f dπ1 ∧ · · · ∧ dπk
)

= ( f ◦ ϕ) d(π1 ◦ ϕ) ∧ · · · ∧ d(πk ◦ ϕ) .

Dually, we obtain the pushforward ϕ• : MF•(X) → MF•(Y) , the degree 0 linear map
given by

〈ω : ϕ•T〉 = 〈ϕ•ω : T〉 for all ω ∈ Dk(Y) , T ∈ MFk(X) .

Let T ∈ MFk(X) and ω = g dτ1 ∧ · · · ∧ dτm ∈ Dm(X) where 0 6 m 6 k . Then we
define the contraction T ω ∈ MFk−m(X) by

〈 f dπ1 ∧ · · · ∧ dπk−m : T ω〉 = 〈 f g dτ1 ∧ · · · ∧ dτm ∧ dπ1 ∧ · · · ∧ dπk−m : T〉 .

We say that T ∈ MFk(X) has finite mass if for some finite Borel measure µ on X ,

∣∣〈 f dπ1 ∧ · · · ∧ dπk : T〉
∣∣ 6

∫
| f | dµ ·

k

∏
j=1

Lip(πj) for all f dπ1 ∧ · · · ∧ dπk ∈ Dk(X) .
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Because Lipb(X) is dense in L1(µ) , T can be uniquely continuously extended to the
space Bb(X)× Lip(X)k , where Bb(X) are the bounded Borel functions on X .

Proposition 5.1.2. Let T ∈ MFk(X) . If T has finite mass, then there exists a smallest
finite Borel measure µ on X satisfying

∣∣〈 f dπ1 ∧ · · · ∧ dπk : T〉
∣∣ 6

∫
| f | dµ ·

k

∏
j=1

Lip(πj) for all f dπ1 ∧ · · · ∧ dπk ∈ Dk(X) ,

(∗)
This measure is called the mass of T, denoted ‖T‖ .

In fact, T has finite mass if and only both of the following conditions hold:

(i). There exists a constant 0 6 M < ∞ , so that for ( fi) ⊂ Lipb(X) , (πi
j) ⊂ Lip(X) ,

∞

∑
i=0

∣∣〈 fi dπi
1 ∧ · · · ∧ dπi

n : T〉
∣∣ 6 M whenever ∑i| fi| 6 1 , Lip(πi

j) 6 1 ;

(ii). for any (πj) ⊂ Lip(X) , the sublinear functional |T(xy, π1, . . . , πn)| on Lipb(X) is
continuous on uniformly bounded increasing sequences, i.e., sequences ( fk) ⊂ Lipb(X)
is such that ( fk) is pointwise increasing and supx∈X , k∈N| fk(x)| < ∞ .

Moreover, ‖T‖ is given by

‖T‖(B) = sup
{ ∞

∑
j=0
|〈1Bj dπi

1 ∧ · · · ∧ dπi
k : T〉|

∣∣∣ B =
∞⊎

j=0

Bj , πi
j ∈ Lip1(X)

}
, (∗∗)

for all B ∈ B(X) , and ‖T‖(M) is the least constant in (i).

Proof. Let conditions (i) and (ii) hold. Let π = (π1, . . . , πk) ∈ Lip1(X)k . For U ⊂ X
open, define

µπ(U) = sup
{
|〈 f dπ1 ∧ · · · ∧ dπk : T〉|

∣∣ f ∈ Lipb(X) , | f | 6 1U
}

where sup ∅ = 0 .

Let U ⊂ ⋃∞
j=0 Uj where Uj ⊂ X are open. We claim µπ(U) 6 ∑∞

j=0 µπ(Uj) . To that end,
let ψN

j = min
(
1, N · dist(xy, X \Uj)

)
,

ϕN
j =

ψN
j

1
N + ∑N

j=0 ψN
j

, and φN =
N

∑
j=0

ϕN
j , so φN =

1

1 +
(

N ·∑N
j=0 ψN

j

)−1 on
∞⋃

j=0

Uj .

Then 0 6 φN 6 φN+1 6 1 , and 1 = limN φN point-wise on
⋃∞

j=0 Uj .

Indeed, if dist(x, X \Uj) < 1
N , then

ψN
j (x) = N · dist(x, X \Uj) 6 (N + 1) · dist(x, X \Uj) 6 ψN+1

j (x) ,
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and if dist(x, X \ Uj) > 1
N , then dist(x, X \ Uj) > 1

N+1 , and ψN
j (x) = 1 = ψN+1

j (x) .
Thus, φN 6 φN+1 . If x ∈ ⋃∞

j=0 Uj , then x ∈ Uj for some j ∈ N , so

φN(x) >
N

N + 1
for all x , N > dist(x, X \Uj) ,

which proves that limN φN(x) = 1 .

For f ∈ Lipb(X) , | f | 6 1U , condition (ii) implies

|〈 f dπ1 ∧ · · · ∧ dπk : T〉| = limN

∣∣∣∣ N

∑
j=0
〈 f · ϕN

j dπ1 ∧ · · · ∧ dπk : T〉
∣∣∣∣ 6

∞

∑
j=0

µπ(Uj) ,

proving our claim. Now, we may extend µπ to arbitrary sets by

µπ(A) = inf
{
∑U∈U µπ(U)

∣∣∣ A ⊂
⋃
U , U countable open family

}
.

As in the proof of proposition 2.1.2, we see that µπ is a Borel measure. Because of condi-
tion (i), it is finite. Next, we claim that

|〈 f dπ1 ∧ · · · ∧ dπk : T〉| 6
∫
| f | dµπ for all f ∈ Lipb(X) .

Because of f = f + − f− , | f | = f + + f− , and the subadditivity of |T| , we may assume
f > 0 . Set ft = min(t, f ) for t ∈ R . Then, for all s > t ,∣∣|〈 fs dπ1 ∧ · · · ∧ dπk : T〉| − |〈 ft dπ1 ∧ · · · ∧ dπk : T〉|

∣∣ 6 |〈( fs − ft) dπ1 ∧ · · · ∧ dπk : T〉|
6 (s− t) · µπ{ f > t} ,

since fs − ft = f − f = 0 on { f 6 t} , and fs − ft = fs − t 6 s− t on { f > t} . Hence,
g(t) = |〈 ft dπ1 ∧ · · · ∧ dπk : T〉| is a Lipschitz function, and |g′(t)| 6 φ(t) = µπ{ f > t}
whenever g is differentiable and φ is continuous (which is L1 a.e., since φ is decreasing).
Thus,

|〈 f dπ1 ∧ · · · ∧ dπk : T〉| =
∫ ∞

0
g′(t) dt 6

∫ ∞

0
µπ{ f > t} dt

=
∫ ∫ ∞

0
1{ f >t}(x) dt dµπ(x) =

∫
f (x) dµπ(x) ,

proving our claim.

Now, µ(A) = supπ∈Lip1(X) µπ(A) for all A ∈ P(X) defines a finite Borel measure
satisfying (∗). If ν is any finite Borel measure satisfying (∗), then the set function τ on
B(X) defined by the right hand side of (∗∗) clearly satisfies τ 6 ν . On the other hand,

µπ(B) 6 |〈1B dπ1 ∧ · · · ∧ dπk : T〉| 6 τ(B) for all B ∈ B(X) , π ∈ Lip1(X)k .
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This implies that µ 6 ν , by the Borel regularity of the finite Borel measures µ and ν .
Hence, µ is the smallest finite Borel measure satisfying (∗). Also, since µ satisfies (∗), we
find µ = τ on B(X) .

The statement about least constants follows from the equality

µ(X) = sup
{ ∞

∑
i=0

µπi( fi)
∣∣∣ fi ∈ Lipb(X) ,

∞

∑
i=0
| fi| 6 1 , πi

j ∈ Lip1(X)
}

,

which is immediate from the definition of µ . �

5.1.3. Metric functionals of finite mass behave well under push-forward and contraction.
Indeed, from (∗), we immediately have

‖ϕ•T‖ 6 Lip(ϕ)k · ϕ•‖T‖ for all ϕ ∈ Lip(X, Y) ,

where the right hand side is the image measure. In particular, if ϕ is an isometry, we have
equality. The defining identity for the push-forward remains valid for f dπ1 ∧ · · · dπk

where f ∈ Bb(X) .
As to contraction, it makes sense for ω = f dπ1 ∧ · · · ∧ dπk where f ∈ Bb(X) , and

‖T ω‖ 6 ‖ f ‖∞ ·
k

∏
j=1

Lip(πj) · ‖T‖ ,

as follows from (∗). If ω = 1C , we write T C for T ω .

5.2 Currents

Definition 5.2.1. Let k ∈ N . A k-dimensional current on X is a k-dimensional metric
functional of finite mass T ∈ MFk(X) satisfying the following additional hypotheses:

(i). T is (k + 1)-linear, and 〈 f dπ1 ∧ · · · ∧ dπk : T〉 = 0 whenever πi is constant on a
neighbourhood of { f 6= 0} for some i , and

(ii). Whenever πj = limi πi
j point-wise and Lip(πi

j) 6 C for some C > 0 , then

〈 f dπ1 ∧ · · · ∧ dπk : T〉 = limi〈 f dπi
1 ∧ · · · ∧ dπi

k : T〉 .

The support of T is supp T = supp‖T‖ . The vector space of k-dimensional currents is
denoted Mk(X) . It is a normed space via the norm M(T) = ‖T‖(X) .

Proposition 5.2.2. The space Mk(X) is a Banach space.

Proof. This follows easily from the fact that the set of finite Borel measures is sequentially
complete, and ‖T‖ depends continuously on T ∈ Mk(X) , the remainder being entailed
by the Banach-Steinhaus theorem, applied to L

(
Bb(X)⊗̂πLip(X)⊗̂πk, R

)
. �
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Proposition 5.2.3. Let g ∈ L1(Rk, R) . Then [[g]] ∈ Mk(Rk) , where [[g]] is defined as
follows,

〈 f dπ1 ∧ · · · ∧ dπk : [[g]]〉 =
∫

f g det π′ dLk

where π = (π1, . . . , πk) . Moreover, ‖[[g]]‖ = |g| · Lk .

5.2.4. First, recall the following commonplace concepts and results.

(i). If 1 < p 6 ∞ and 1
p + 1

q = 1 , then the weak topology on Lp(Rk) is defined to be
the coarsest locally convex topology making the linear functionals

Lp(Rk) → C : f 7→
∫

f · g dLk continuous for all g ∈ Lq(Rk) .

With this topology, Lp(R) identifies with the dual space of Lq(Rk) , and the norm Lp(Rk)
identifies with the dual norm. In particular, the unit ball of Lp(Rk) is weakly compact
(it is metrisable since its topology has a countable base, seeing that Lq(Rk) is separable).

(ii). We say that f ∈ L1
loc(Rk) is weakly differentiable if for all j = 1, . . . , k there exist

gj ∈ L1
loc(Rk) , so that∫

f · ∂j ϕ dLk = −
∫

gj · ϕ dLk for all 1 6 j 6 k , ϕ ∈ D(Rk)

where D(Rk) denotes the set of smooth compactly supported functions on Rk . The gj

are uniquely determined up to equality Lk a.e., and are called the weak partial derivatives
of f , ∂j f = gj .

(iii). For 1 6 p 6 ∞ , let W1,p(Rk) be the Sobolev space of functions f ∈ Lp(Rk) which
are weakly differentiable with ∂j f ∈ Lp(Rk) . Then W1,p(Rk) is a Banach space for the
norm

‖ f ‖p
W1,p = ‖ f ‖p

p +
k

∑
j=1
‖∂j f ‖p

p if p < ∞ and ‖ f ‖W1,∞ = max
(
‖ f ‖∞,

k
max

j=1
‖∂j f ‖∞

)
.

Here, we identify a.e. equal functions. In fact, W1,∞(Rk) consists of true functions, as the
following lemma and corollary show.

Lemma 5.2.5. Let f , f j ∈ Lip(Rk) , Lip( f j) 6 C , and f j → f point-wise. Then f j, f have
weak derivatives ∂i f j, ∂i f ∈ L∞(Rk) , and∫

∂i f · g dLk = limj

∫
∂i f j · g dLk for all i = 1, . . . , k , g ∈ L1(Rk) .

Proof. Set

gh
ij(x) =

f j(x + hei)− f j(x)
h

for all x ∈ Rk , h > 0 .

Then ‖gh
ij‖∞ 6 Lip( f j) 6 C , so gh

ij ∈ L∞(Rk) , so (gh
ij) is contained in a weak∗ compact
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subset of L∞(Rk) . Let hn → 0 be arbitrary, and fix 1 6 i 6 n , j ∈ N . Let hα(n) be any

subsequence such that there exists gij ∈ L1
loc(Rk) such that gij = limn g

hα(n)
ij weakly in

L∞(Rk) . Further passing to subsequences, we may assume that the convergence is also
point-wise Lk a.e. Hence, we have gij ∈ L∞(Rk) , ‖gij‖∞ 6 C .

For ϕ ∈ D(Rk) , Lebesgue’s theorem 1.5.7 shows

∫
f ∂i ϕ = limn

∫
f j(x)

ϕ(x + hα(n)ei)− ϕ(x)
hα(n)

dx

= − limn

∫
g

hα(n)
ij (x)ϕ(x + hj

nei) dx = −
∫

gij ϕ .

Hence, the class gij ∈ Lp(Rk) is independent of the convergent subsequence chosen, and
by compactness, we have convergence. Thus f j is weakly differentiable, and ∂i f j = gij .

To prove that ∂i f j → ∂i f weak∗ in L∞(Rk) , note that the ball of radius C in L∞(Rk)
is compact and metrisable in the σ

(
L∞, L1) topology. Moreover, the limit

limj

∫
∂i f j · g dLk = limj limn

∫
ghn

ij · g dLk

exists by Lebesgue’s theorem 1.5.7; the limit

limn

∫ f (x + hn)− f (x)
hn

· g dLk = limn limj

∫
ghn

ij · g dLk

exists by the same argument as above.

By Grothendieck’s double limit theorem [Bou87, IV.33, prop. 2], we may exchange
limit order to obtain

limj

∫
∂i f j · g dLk = limn

∫ f (x + hn)− f (x)
hn

· g dLk =
∫

∂i f g dLk ,

as required. �

Corollary 5.2.6. Endow Lipb(Rk) with the norm

‖ f ‖Lip = ‖ f ‖+ Lip( f ) for all f ∈ Lipb(Rk) .

Then Lipb(Rk) = W1,∞(Rk) , with equivalence of norms.

Proof. By lemma 5.2.5, any f ∈ Lipb(Rk) has essentially bounded weak derivatives.

Conversely, let f ∈ W1,∞(Rk) . Let η ∈ D(Rk) , η > 0 , be such that
∫

η dLk = 1 , and

f ε(x) =
1
εn ·

∫
η
( x− y

ε

)
f (y) dLk(y) for all ε > 0 , x ∈ Rk .

Then f = limε→0+ f ε uniformly on compacts, and ‖ f ε‖∞ 6 ‖ f ‖∞ . Moreover, f ε is
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differentiable, so

| f ε(x)− f ε(y)| 6 ‖ f ε′‖∞ · ‖x− y‖ 6 ‖ f ‖W1,∞ · ‖x− y‖ for all x, y ∈ Rk .

Taking the limit ε → 0 , we find f ∈ Lipb(Rk) . �

Proof of proposition 5.2.3. Clearly, [[g]] is multi-linear, and vanishes on f dπ1 ∧ · · · ∧ dπk

as soon as πi is constant on a neighbourhood of { f 6= 0} , since in that case, det ϕ′ = 0
on { f 6= 0} . Moreover,

|〈 f dπ1 ∧ · · · ∧ dπk : [[g]]〉| 6
∫
| f g det π′| dLk 6

k

∏
j=1

Lip(πj) ·
∫
| f | d(|g| · Lk) ,

because by Hadamard’s inquality,

|det A| 6
k

∏
j=1
‖aj‖ for all A = (a1, . . . , ak) ∈ Rk×k .

Let πj = limi πi
j point-wise, where Lip(πi

j) 6 C for some C > 0 . Then we have
det π′ = limi det πi′ weakly in L∞(Rk) by lemma 5.2.5. Therefore,

〈 f dπi
1 ∧ · · · ∧ dπi

k : [[g]]〉 = limi〈 f dπi
1 ∧ · · · ∧ dπi

k : [[g]]〉 for all f ∈ Lipb(Rk) ,

so [[g]] ∈ Mk(Rk) .

We have seen that ‖[[g]]‖ 6 |g| · Lk . Conversely, if f ∈ Lipb(Rk) , we may assume
f 6= 0 . Then let χi ∈ Lipb(Rk) , χi = 0 on { f = 0} , χi → 1 point-wise, and |χi| 6 1 .
Define πi

j = prj for j > 1 , i ∈ N , and let

πi
1(x) =

∫ x1

0

χi · f g
| f g|

(
y, x2, . . . , xk

)
dL1(y) for all x ∈ Rk , i ∈ N .

Then it follows that

〈 f dπi : [[g]]〉 =
∫

f g det πi′ Lk =
∫

χi · | f | d(|g| · Lk) →
∫
| f | d(|g| · Lk) ,

proving the assertion. �

Definition 5.2.7. A current T ∈ Mk(X) is called normal if ∂T ∈ Mk(X) . It is clear that
∂T satisfies condition (ii) in the definition of a current for any T ∈ Mk(X) , and (k + 1)-
linearity is also obvious. The locality property for ∂T also holds automatically, as follows
from the stronger locality established for T in part (iii) of the theorem below. Thus, for
T to be normal, it is necessary and sufficient that ∂T have finite mass. The vector space
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of normal currents will be denoted Nk(X) . Endowed with the norm defined by

Nk(T) = Mk(T) + Mk(∂T) for all T ∈ Nk(X) ,

the space of normal currents is a Banach space.

Theorem 5.2.8. Let T ∈ Mk(X) . Its extension to Bb(X)× Lip(X)k satisfies:

(i). T is (k + 1)-linear, alternating in πi ,

〈d( f π1) ∧ · · · ∧ dπk : T〉 = 〈 f dπ1 ∧ · · · ∧ dπk : T〉+ 〈π1 d f ∧ · · · ∧ dπk : T〉 ,

whenever f , π1 ∈ Lipb(X) , and

〈 f dψ1(π) ∧ · · · ∧ dψk(π) : T〉 = 〈 f det ψ′(π) dπ1 ∧ · · · ∧ dπk : T〉

whenever ψ = (ψ1, . . . , ψk) , ψj ∈ C1(Rk) , and ψ′ is bounded;

(ii). for f i → f in L1(‖T‖) , πi
j → πj point-wise, Lip(πi

j) 6 C for some C > 0 ,

〈 f dπ1 ∧ · · · ∧ dπk : T〉 = limi〈 f i dπi
1 ∧ · · · ∧ dπi

k : T〉 ;

(iii). 〈 f dπ1 ∧ · · · ∧ dπk : T〉 = 0 whenever { f 6= 0} =
⋃∞

j=1 Bj where the Bj are Borel,
and for all j , there exists some i such that πi|Bj is constant.

5.2.9. We recall some concepts from the theory of the method of finite elements.

A k-simplex ∆ ⊂ Rk is the convex hull of k + 1 affinely independent vectors from Rk ,
called its vertices. The totality of vertices of ∆ is denoted V∆ (it is uniquely determined
by ∆ as the set of extreme points). A face is the convex hull of a subset of its vertices.
Given a bounded, closed polyhedral domain D ⊂ Rk , a triangulation is a finite family T
of k-simplices, such that any two simplices intersect only in their boundaries, and any
face of a simplex is either the face of another simplex, or countained in the boundary
of D (note that in the literature, rather more general triangulations are considered). A
family S of k-simplices is called regular if S is fine, and

θS = sup
{diam(∆)

r∆

∣∣∣ ∆ ∈ S
}

< ∞ where r∆ = sup{2r|∃x : B(x, r) ⊂ ∆} .

A family of triangulations (Tj) is regular if
⋃

j Tj is.

Given a triangulation T of D , let AT (D) be the set of functions f : D → R which
are affine when restricted to any ∆ ∈ T . For any ∆ ∈ T , and any vertex v of ∆ , let
αv,∆ : Rk → R be the uniquely determined affine function such that αv,∆(w) = δvw for
all vertices w of ∆ . Because of the requirement on faces of simplices in triangulations,
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there exists a uniquely determined linear map

pT : RD → AT (D) such that pT ( f )|∆ = p∆( f ) = ∑v∈V∆
f (v)αv,∆ for all ∆ ∈ T .

Lemma 5.2.10. Let (Tε)ε>0 be a regular family of triangulations of the bounded polyhe-
dral domain D , where sup∆∈T diam ∆ 6 ε . Then, for some constant ∞ > C > 0 ,

‖ f − pTε
f ‖W1,∞ 6 C · ε · ‖ f ‖W1,∞ for all f ∈ W1,∞(D◦) , ε > 0 .

Thus, any Lipschitz function on D can be approximated in W1,∞(D◦) by a sequence of
piecewise affine functions.

Proof. Fix ε > 0 and ∆ ∈ Tε . Let ∆̂ = (diam ∆)−1 · ∆ . There exists an affine transforma-
tion A : ∆̂ → S , S denoting the standard k-simplex S = {x ∈ [0, 1]k|∑k

j=1 xj = 1} . The
Jacobian of A has a finite upper bound independent of ∆ and ε > 0 , due to the regularity
of (Tε) . Moreover, writing f̂ (x) = f

(
diam ∆ · x

)
,

̂f − p∆ f = (1− p∆̂) f̂ = (1− pS)( f̂ ◦ A−1) ◦ A .

Thus, for some constant 0 < C < ∞ ,

‖ f − p∆ f ‖W1,∞(∆◦) 6 Cε · ‖1− pS‖ · ‖ f ‖W1,∞(∆◦) .

The assertion follows by taking sums over ∆ ∈ Tε . �

Proof of theorem 5.2.8. The continuity (ii) is fairly easy: by finiteness of mass and the
boundedness assumption on the Lipschitz constants,

〈 f dπ`
1 ∧ · · · ∧ dπ`

k : T〉 = limi〈 f i dπ`
1 ∧ · · · ∧ dπ`

k : T〉 uniformly in `.

Moreover, 〈 f i, dπ1 ∧ · · · ∧ dπk : T〉 = lim`〈 f i dπ`
1 ∧ · · · ∧ dπ`

k : T〉 for all i , by the conti-
nuity axiom. By Moore’s lemma [DS58, I.7.5, lemma 6], the diagonal limit exists and

〈 f dπ1 ∧ · · · ∧ dπk : T〉 = limi〈 f i, dπ1 ∧ · · · ∧ dπk : T〉 = limi〈 f i, dπi
1 ∧ · · · ∧ dπi

k : T〉 .

In particular, T is σ-additive in f . Thus, for (iii), replacing f by 1Bi f , we may as-
sume πi is constant on { f 6= 0} for some i . Appropriately scaling πj , we may assume
Lip(πj) 6 1 for all j . Seeking a contradiction, assume that there is a closed C ⊂ { f 6= 0}
and an ε > 0 such that |〈dπ1 ∧ · · · ∧ dπk : T C〉| > ε . Since ‖T‖ is Borel regular
by proposition 1.1.7, theorem 1.1.9 (i) gives δ > 0 such that ‖T‖(Cδ \ C) 6 ε where
Cδ =

{
x ∈ X

∣∣ d(x, X) 6 δ
}

.
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Let c = πi on { f 6= 0} . Define, for t > 0 , functions gt : X → R and ct : R → R by

gt(x) =
(

1− 3
t

dist(x, C)
)+

and ct(s) = (s− t)+ + (t− s)− where f− = min( f , 0) .

Let
Tst = |〈gs dπ1 ∧ · · · ∧ dπi−1 ∧ dπt

i ∧ dπi+1 ∧ · · · ∧ dπk : T〉|

where πt
i = ct ◦ (πi − c) + c . Since g0 = 1 and c0 = id , we know that T00 > ε . By (ii),

there exist 0 < t < s < δ such that Tst > ε . (Note that Lip(ct) = 1 .) Now, πt
i = c on Ct ,

and supp gt ⊂ Ct/2 , so Ttt = 0 . But this implies

Tst = Tst − Ttt 6
∫
|gs − gt| ‖T‖ 6 ‖T‖(Cδ \ C) 6 ε ,

since |gs − gt| = gs − gt 6 gs 6 1 . This is a contradiction.

Therefore, approximating f by linear combinations of 1C , C ⊂ { f 6= 0} closed, we
obtain the statement (iii).

We establish a special case of the chain rule in (i): For ψ ∈ C1(R) ∩ Lip(R) , we have

〈 f dπ1 ∧ · · · dπi−1 ∧ d(ψ(πi)) ∧ · · · ∧ dπk : T〉 = 〈 f ψ′(πi) dπ1 ∧ · · · ∧ dπk : T〉

for all πj ∈ Lip(X) , f ∈ Bb(X) . Indeed, this follows from (iii) if ψ is constant; if ψ is
linear, the statement is trivial; hence, we have the equality if ψ is affine. For ψ piecewise
affine, the equality follows from (iii). Suffices to apply lemma 5.2.10 to obtain the general
case.

Next, we prove that T is alternating in πi . To simplify matters, assume that k = 2 ,
and π1 = π2 = π . We need to prove 〈 f dπ ∧ dπ : T〉 = 0 . Let

σk =
1
k
· ϕ(kπ) and τk =

1
k

ϕ
(

kπ +
1
2

)
where ϕ ∈ C∞(R) , ϕ = id on Z , ϕ′(1 + t) = ϕ′(t) > 0 for all t ∈ R , and ϕ′ = 0 on[
0, 1

2

]
. Then |ϕ(x)− x| 6 1 , so (σk) and (τk) converge uniformly to π , with uniformly

bounded Lipschitz constants (ϕ′ is bounded). By the above,

〈 f dσk ∧ dτk : T〉 =
1
k2 ·

〈
f ϕ′(kπ)ϕ

(
kπ + 1

2

)
: T

〉
= 0 ,

since ϕ′ = 0 on
[
0, 1

2

]
. By (ii), we find 〈 f dπ ∧ dπ : T〉 = 0 , so T is alternating.

Now to the general case of the chain rule in (i). For ψ a linear function, the statement
follows from the fact that T is multilinear and alternating in the πi . Then from (iii), we
find that it is also true if all components of ψ are simultaneously affine on each simplex
of a triangulation of Rk . The general case follows from lemma 5.2.10.

Now to the proof of the product rule in (i). Replacing T by T (dπ2 ∧ · · · ∧ dπk) ,
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we may assume k = 1 . Let S = ( f , π1)•(T) ; the identity reduces to

〈d(g1g2) : S〉 = 〈g1 dg2 : S〉+ 〈g2 dg1 : S〉 for all g1, g2 ∈ C1(R2) ∩ Lipb(R2)

such that gj = prj on a square Q ⊃ ( f , π1)(X) ⊃ supp S . Let (Tε) be regular family of
triangulations for Q , and set gε = pTε

(g1g2) . Then gε|∆ = a∆
ε pr1 +b∆

ε pr2 +c∆
ε on any

∆ ∈ Tε . From lemma 5.2.10, we find gε → g in W1,∞(Q) ; since ∂j(g1g2) = gi on Q if
{i, j} = {1, 2} , we find that

limε→0 sup∆∈Tε
sup(x,y)∈∆

(
|g1(x, y)− a∆

ε x|+ |g2(x, y)− b∆
ε y|

)
= 0 ,

so by (ii) and (iii),

〈d(g1g2) : S〉 = lim
ε→0

∑
∆∈Tε

〈a∆
ε dx : S ∆〉+ 〈b∆

ε dy : S ∆〉 = 〈g1 dg2 : S〉+ 〈g2 dg1 : S〉 ,

which finally proves the theorem. �

Corollary 5.2.11. Let T ∈ Mk(X) and f ∈ Lipb(X) . Then ∂(T f ) = ∂T f − T d f .

Definition 5.2.12. Let Tj, T ∈ Mk(X) . We say that Tj → T weakly if

limj〈 f dπ : Tj〉 = 〈 f dπ : T〉 for all f ∈ Lipb(X) , π = (π1, . . . , πk) , πi ∈ Lip(X) .

For any open subset U ⊂ X , the map T 7→ ‖T‖(U) is l.s.c. for the topology of weak
convergence on Mk(X) . This follows from the equation (∗∗) in proposition 5.1.2, since
this gives a representation of the mass as the supremum of weakly continuous functions.

Definition 5.2.13. For any Lk summable function f ∈ L1(Rk, R) , U ⊂ Rk open, define
the total variation by

|∇ f |(U) = sup
{∫

f · divϕ dLk
∣∣∣∣ ϕ ∈ C(1)

c (U, Rk) , |ϕ| 6 1
}

where divϕ =
k

∑
j=1

∂j ϕj .

The summable function f is called of bounded variation if |∇ f |(Rk) < ∞ . The vector
space of BV functions is denoted BV(Rk) . It is a real Banach space for the norm

‖ f ‖BV = ‖ f ‖1 + |∇ f |(Rk) .

Theorem 5.2.14. For any T ∈ Nk(Rk) , there exists a unique function g ∈ BV(Rk) such
that T = [[g]] . Moreover, ‖∂T‖ = |∇g| on open subsets.

Lemma 5.2.15. Let µ be a continuous real linear functional on Bb(Rk) which is weakly
differentiable, i.e. there exists ∇µ ∈ L1

loc(Rk, Rk) , such that

〈divϕ : µ〉 = −
∫

(ϕ : ∇µ) dLk for all ϕ ∈ C(1)
c (Rk, Rk) .
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Then there exists g ∈ BV(Rk) such that 〈 f : µ〉 =
∫

f g dLk for all f ∈ Bb(Rk) .

Proof. Let χ ∈ C(∞)
c (Rk) , 0 6 χ 6 1 ,

∫
χ dLk = 1 . Set χε(x) = ε−k · χ(ε−1x) for x ∈ Rk ,

ε > 0 . Define gε(x) = 〈χε(x− xy) : µ〉 . Then∫
ϕgε dLk = 〈 fε ∗ ϕ : µ〉 for all ϕ ∈ C(1)

c (Rk) ,

so (gε) is bounded in BV(Rk) , and gε · Lk → µ in the weak topology on Bb(Rk)′ . More-
over, the inclusion of BV(Rk) in L1

loc(Rk) is compact, so some subsequence of (gε) con-
verges in L1

loc(Rk) to g ∈ BV(Rk) . �

Proof of theorem 5.2.14. Define a continuous functional by

〈 f : µ〉 = 〈 f dx1 ∧ · · · ∧ dxk : T〉 for all f ∈ Bb(Rk) .

By the lemma, suffices to prove the weak differentiability of µ .
Let (ej) be an orthonormal basis of Rk , and let πj(x) = (x : ej) · ej . For ϕ ∈ C(1)

c (Rk),
we have

|〈∂i ϕ : µ〉| = |〈dϕ ∧ dπ1 ∧ · · · ∧ dπi−1 ∧ dπi+1 ∧ · · · ∧ dπk : T〉| 6
∫
|ϕ| d‖∂T‖

by the chain rule in theorem 5.2.8. This implies µ = g · Lk for some g ∈ BV(Rk) , and
|∇g| 6 ‖∂T‖ . Again applying the chain rule, we obtain [[g]] = T . By a similar device as
in the proof of proposition 5.2.3, we find ‖∂T‖ 6 |∇g| . �

Corollary 5.2.16. Let X be separable, T ∈ Nk(X) . For any Lk neglible Borel B ⊂ Rk ,

‖T dπ‖(π−1(B)) = 0 for all π ∈ Lip(X, Rk) .

Moreover, ‖T‖ � Hk . (Here, we use the usual notation for absolute continuity, al-
though Hk is usually not finite on bounded subsets.)

Proof. Let f ∈ Bb(X) . Then π•(T f ) ∈ Nk(Rk) , since ∂(π•(S)) = π•(∂S) . By theo-
rem 5.2.14, π•(T f ) = [[g]] for some g ∈ BV(Rk) . Then, xj denoting the jth coordinate
function on Rk ,

〈 f 1π−1(N) : T dπ〉 = 〈1π−1(N) : T ( f dπ)〉 = 〈1N : π•(T f dπ)〉

= 〈1N dx1 ∧ · · · ∧ dxk : π•(T f )〉 =
∫

N
g dLk = 0 .

Since f was arbitrary, from proposition 5.1.2 we conclude that ‖T dπ‖(π−1(N)) = 0 .
Finally, if Hk(M) = 0 where M ⊂ X , then since Hk is Borel regular, M ⊂ B where

B ∈ B(X) is Hk-negligible. Thus, Hk(π(B)) = 0 by theorem 2.2.2. By Borel regularity,
π(B) ⊂ N , for N ∈ B(Rk) Lk-negligible. Then M ⊂ π−1(N) , so ‖T dπ‖(M) = 0 .
Since π was arbitrary, proposition 5.1.2 shows that ‖T‖(M) = 0 . �
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5.3 Rectifiable Currents

Definition 5.3.1. Let T ∈ Mk(X) . Then T is called a rectifiable current if its mass ‖T‖
is k-rectifiable. A rectifiable current is called integer-rectifiable if for all ϕ ∈ Lip(X, Rk) ,
and any open U ⊂ X , ϕ•(T U) = [[ϑ]] for some Lk-summable and integer-valued
ϑ : Rk → Z . Finally, a rectifiable current is called integral if it is integer-rectifiable
and normal. Denote the spaces of rectifiable, integer-rectifiable, and integral currents,
respectively, by

Rk(X) , Ik(X) , and Ik(X) .

The two former spaces are closed in Mk(X) , whence the latter is closed in Nk(X) .

Remark 5.3.2. If T ∈ Nk(X) and ‖T‖ is concentrated on a countably k-rectifiable set,
then corollary 5.2.16 shows that T ∈ Rk(X) .

Theorem 5.3.3. Let T ∈ M0(X) , and assume X that is complete and contains a dense
subset whose cardinality is an Ulam number (e.g. X separable and complete).

(i). We have T ∈ I0(X) if and only if 〈1U : T〉 ∈ Z for all open subset U ⊂ X .

(ii). We have T ∈ I0(X) if and only if ϕ•T ∈ I0(R) for all ϕ ∈ Lip(X, R) .

(iii). If X = Rn , then T ∈ R0(X) if and only if ϕ•T ∈ R0(R) for all ϕ ∈ Lip(X, R) .

Proof of (i). The condition is certainly necessary for integer-rectifiability. Assume that it
is given. Then let

A =
{

x ∈ X
∣∣ ‖T‖B(x, r) > 1 for all r > 0

}
.

Clearly, A is closed. Since ‖T‖ is a finite measure, for any r > 0 , A is covered by finitely
many balls of radius r . Hence, A is compact. By essentially the same argument, A is
also discrete. Thus, A is finite. Of course, T A ∈ R0(X) , and by continuity of T , we
find T A ∈ I0(X) . Suffices to show that T is supported on A . If x ∈ X \ A , there is a
ball B ⊂ X \ A such that ‖T‖(B) < 1 . Then, for any open U ⊂ B , |〈1U : T〉| is a natural
number less than 1 , and thus equals 0 . By proposition 5.1.2, ‖T‖(B) = 0 . If K ⊂ X \ A
is compact, then ε = dist(X \ A, K) > 0 . Since K is contained in the union of finitely
many balls of radius < ε

2 , we find ‖T‖(K) = 0 . Since ‖T (X \ A)‖ is concentrated on
a σ-compact by corollary 1.2.6, we find that T = T A .

Proof of (ii). Again, the condition is clearly necessary, and we assume that it obtains.
Let U ⊂ X be open, and denote ϕ = dist(xy, X \U) . Then ϕ ∈ Lip(X, R) by the triangle
inequality, and

Z 3 〈1]0,∞[ : ϕ•T〉 = 〈1ϕ>0 : T〉 = 〈1U : T〉 ,

so by (i), we find T ∈ I(X) .

Proof of (iii). The statement follows from the following lemma. �
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Lemma 5.3.4. Let µ be a signed measure on Rk , i.e. µ = ν f where ν is a Radon
measure and f : Rk → R is a locally ν summable function. Furthermore, define

fx,ξ(y) =
k

max
i=1

ξi · |xi − yi| for all y ∈ Rk , Q = Qk ×Qk
>0 .

Then µ is 0-rectifiable (i.e. concentrated on a countable set and absolutely continuous to
H0) if and only if this is the case for the image measures fx,ξ(µ) , for all (x, ξ) ∈ Q .

Proof. The condition is necessary, so assume it given. By subtracting its point masses,
we may assume that µ has no point masses. Seeking a contradiction, assume that µ is
not 0-rectifiable, and let 0 6 ` 6 k be minimal with the property

|µ|(x0 + RN\I) > 0 for some I ⊂ {1, . . . , k} , #I = k− ` , x0 ∈ Rk .

Since µ has no point masses, ` > 1 . Possibly replacing µ by −µ , there exists ε > 0 and
x1 ∈ Qk such that

µ(M) > 3ε where M =
{

y ∈ x0 + RI ∣∣ ‖y− x1‖∞ < 1
}

.

Note that M only depends on the components x1i , i 6∈ I , of x1 , so we may choose x1i ,
i ∈ I , arbitrarily close to x0i without modifying M . Let k ∈ N be sufficiently large such
that

|µ|(Nk) < ε where Nk =
{

y ∈ Rk ∣∣ dist∞(y, M) ∈
]
0, 2

k

[}
.

The existence of such a k follows since M has finite measure, and M =
⋂∞

k=1(M ∪ Nk) .

Now, modify x1i such that maxi∈I |x0i − x1i| < 1
k . Define ξ ∈ Qk

>0 by ξi = k for i ∈ I
and ξi = 1 otherwise. Then

M ⊂ f−1
x1,ξ([0, 1[) ⊂ M ∪ Nk .

Indeed, for y ∈ M ,

ξi · |x1i − yi| = k · |x1i − x0i| < 1 if i ∈ I ,

and ξi · |x1i − yi| 6 ‖y− x1‖∞ < 1 otherwise. For fx1,ξ(y) < 1 and y 6∈ M , we have

|yi − x0i| 6 |yi − x1i|+ |x1i − x0i| <
2
k

for all i ∈ I .

Moreover, |yi − x1i| < 1 for all i 6∈ I , so z ∈ Rk , defined by zi = x0i for i ∈ I , and zi = yi

for all i 6∈ I , is contained in M . Thus, ‖y− z‖∞ < 2
k , and y ∈ Nk .

Let A ⊂ R be countable, such that µ̃ = fx1,ξ(µ) is concentrated on A . For any
r ∈ R , f−1

x1,ξ(r) is contained the union of finitely many affine hyperplanes. Thus, by the
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minimality of ` , we conclude |µ|(M ∩ f−1
x1,ξ(r)) = 0 for all r . Therefore,

|µ̃|([0, 1[) = |µ|
(

f−1
x1,ξ(A ∩ [0, 1[)

)
6 |µ|(Nk) < ε .

On the other hand,

µ̃([0, 1[) = µ
(

f−1
x1,ξ([0, 1[)

)
= µ(M) + µ( f−1

x1,ξ([0, 1[) ∩ Nk) > µ(M)− |µ|(Nk) > 2ε ,

a contradiction. �

Theorem 5.3.5. Let T ∈ Mk(X) . Then T ∈ Rk(X) (resp. T ∈ Ik(X)) if and only if
there exist compacts Kj ⊂ Rk , functions ϑj ∈ L1(Rk, R) (resp. ϑj ∈ L1(Rk, Z)) such that
supp ϑj ⊂ Kj , and Lipschitz maps ϕj : Kj → X , such that

T =
∞

∑
k=0

ϕj•[[ϑj]] and M(T) =
∞

∑
k=0

M
(

ϕj•[[ϑj]]
)

.

Moreover, if X is the dual of a separable Banach space, T is the limit in Mk(X) of normal
currents.

Proof. The condition is clearly sufficient for the rectifiable case. For the integer-rectifiable
case, it suffices to check that S = ϕ•[[ϑ]] is integer-rectifiable for ϑ ∈ Lip(K, X) , K ⊂ X
compact, and ϑ ∈ L1(Rk, Z) , supp ϑ ⊂ K . Rectifiability is clear, and for any open
U ⊂ X , ψ ∈ Lip(X, Rk) , setting φ = ψ ◦ ϕ ,

〈 f dπ : ψ•(S U)〉 =
∫

K∩ϕ−1(U)
( f ◦ φ) det(π ◦ φ)′ϑ dLk

=
∫

K∩ϕ−1(U)
( f · det π′) ◦ φ · det φ′ϑ dLk

=
∫

φ(K)∩U
f det π′ · (ϑ · sgn det φ′) ◦ φ−1 · N(φ|K ∩ ϕ−1(U), xy) dLk ,

by the change of variables formula (corollary 4.1.6) and uniqueness of measure in Rk

(theorem 2.4.3). Hence, ψ•(S U) = [[(ϑ · sgn det φ′) ◦ φ−1 · N(φ|K ∩ ϕ−1(U), xy)]] , and
sufficiency also obtains in the integer-rectifiable case.

Conversely, let T be rectifiable, and let S ⊂ X be a countably k-rectifiable subset on
which ‖T‖ is concentrated. By lemma 4.2.3, S \ ⋃∞

j=0 ϕj(Kj) is Hk-negligible for some
compacts Kj ⊂ Rk , some bi-Lipschitz maps f j : Kj → f j(Kj) = Sj ⊂ S , such that Sj are
pairwise disjoint. Let Tj = ϕ−1

j• (T Sj) . Then ‖Tj‖ is absolutely continuous to Hk , by
theorem 2.2.2. By theorem 1.9.5, the functional µj on Bb(Rk) , defined by

〈 f : µ〉 = 〈 f dx1 ∧ · · · ∧ dxn : Rj〉 for all f ∈ Bb(Rk) ,

is a signed measure, µj = ϑj · Lk , for some ϑj ∈ L1(Rk) vanishing outside Kj . By the
chain rule in theorem 5.2.8, we find Rj = [[ϑj]] . Then T Sj = ϕj•[[ϑj]] follows by locality
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in theorem 5.2.8, and the assertion in the rectifiable case follows from disjointness of Sj .
In the integer-recitifiable case, we may assume ϑj integer-valued by definition.

If X is the dual of a separable Banach space, we may assume that the ϕj are defined
on all of Rk . Replacing ϕj by ϕj(Lip(ϕj)−1xy) , we may assume Lip(ϕj) 6 1 . Fix ε > 0
and choose θj ∈ BV(Rk) , ‖ϑj − θj‖1 6 ε

2j+1 . Then S = ∑∞
j=0 ϕj•[[θj]] is the limit of normal

currents, and

M(T − S) 6
∞

∑
j=0

Lip(ϕj) ·M([[ϑj]]− [[θj]]) 6
∞

∑
j=0

∫ ∣∣|ϑj| − |θj|
∣∣Lk 6

∞

∑
j=0

ε

2j+1 = ε ,

proving the assertion. �

Proposition 5.3.6. Let T ∈ Rk(X) , and define ST = {Θk∗(‖T‖, xy) > 0} . Then ST is
countably k-rectifiable, ‖T‖ is concentrated on ST , and for any Borel S ⊂ X on which
‖T‖ is concentrated, Hk(ST \ S) = 0 .

Proof. Let S be countably k-rectifiable and θ : S → [0, ∞[ beHk S summable, such that
‖T‖ = ϑ · Hk S . By the non-trivial density result [Kir94, th. 5.4.], ϑ(x) = Θ∗k(‖T‖, x)
for Hk-a.e. x ∈ S . Thus,

Hk(ST \ S) = Hk(ST \ (S ∩ {θ > 0})) = 0 ,

proving the assertion. �

Definition 5.3.7. The previous proposition allows us to define the size of T ∈ Rk(X) as
S(T) = Hk(ST) .

5.4 Normal Currents and Slicing

In what follows, we shall always assume X to be complete, and to contain a dense subset
whose cardinality is an Ulam number (e.g., X separable and complete). This assumption
guarantees that any finite Borel measure on X be concentrated on a σ-compact, by corol-
lary 1.2.6.

On our way to the Plateau problem, we exhibit various compactness properties of
different classes of currents, the first of which the following equicontinuity of normal
currents.

Proposition 5.4.1. Let T ∈ Nk(X) . Then, for f ∈ Lipb(X) and σi, τi ∈ Lip1(X) , we have

∣∣〈 f dσ : T〉 − 〈 f dτ : T〉
∣∣ 6

k

∑
i=1

[∫
X
| f · (σi − τi)| d‖∂T‖+ Lip( f ) ·

∫
supp f

|σi − τi| d‖T‖
]

.

In particular, bounded subsets of Nk(X) are equicontinuous on Lipb(X)× Lip1(X)k .

Proof. It suffices to prove the assertion for bounded σi and τi , since the general case then
follows by restricting T to sets on which σi , τi take their values in [k, k + 1[ for k ∈ Z .
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So, assume σi , τi bounded, and set σ′ = (σ2, . . . , σk) . Then

〈 f dσ : T〉 = 〈 f dσ′ : T dσ1〉 = 〈 f dσ′ : ∂T σ1 − ∂(T σ1)〉
= 〈 f σ1 dσ′ : ∂T〉 − 〈σ1 d f ∧ dσ′ : T〉 ,

by corollary 5.2.11. We obtain

∣∣〈 f dσ : T〉 − 〈 f dτ1 ∧ dσ′ : T〉
∣∣ 6

∫
X

∣∣ f · (σ1 − τ1)
∣∣ d‖∂T‖+

∫
supp f

|σ1 − τ1| d‖T‖ ,

because 〈(τ1 − σ1) d f ∧ dσ′ : T〉 = 0 for σ1 = 0 on X \ supp f , due to locality. Applying
the alternating property and the triangle inequality, we obtain our claim. �

Compactness of Normal Currents 5.4.2. Let (Tj) ⊂ Nk(X) be a bounded sequence. As-
sume that for every j ∈ N , there exists a compact Kj ⊂ X , such that

(
‖Ti‖+ ‖∂Ti‖

)
(X \ Kj) 6

1
j

for all i ∈ N .

Then a subsequence of (Tj) converges to T ∈ Nk(X) such that ‖T‖ + ‖∂T‖ is concen-
trated on

⋃∞
j=0 Kj .

Proof. Passing to a subsequence, we may assume there are finite Borel measures µ and ν

on X such that µ = limj‖Tj‖ and ν = limj‖∂Tj‖weak∗ in Cb(X)′ . Since (µ + ν)(X \Kj) 6
1
j , we find that µ + ν is concentrated on

⋃∞
j=0 Kj .

We claim that (Tj) has a pointwise convergent subsequence. By a diagonal argument,
it suffice to find for each p ∈ N \ 0 , a subsequence α = αp , such that

lim supnm

∣∣〈 f dπ : Tα(n) − Tα(m)〉
∣∣ 6

3
p

for all f dπ ∈ Dk(X) , f , πi ∈ Lip1(X) , | f | 6 p .

To that end, let χ ∈ Lip1(X) , 1K2p2 6 χ 6 1 . By locality, Tj − Tj χ = Tj (1− χ) , so

N(Tj − Tj χ) 6 N(Tj (X \ K2p2)) 6
1
p2 .

To establish our claim, it suffices prove that for a convenient α , 〈 f dπ : Tα(j) χ〉 con-
verges for all f , πi ∈ Lip1(X) .

Let Z = Lip1
(⋃∞

j=0 Kj
)

. Then Z , endowed with the topology of uniform convergence
on compact subsets, is a separable metrisable space. Select a countable dense subset
D ⊂ Z , and a subsequence α , such that 〈 f dπ : Tα(j) χ〉 converges for all f , πi ∈ D .
Let f , πi ∈ Lip1(X) . Then, for any h, σi ∈ Z , proposition 5.4.1 gives

lim supmn

∣∣〈 f dπ : Tα(n) χ− Tα(m) χ〉
∣∣ 6 2 lim supn|〈 f χ dπ : Tn〉 − 〈hχ dσ : Tn〉|
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6 lim supn

[∫
χ| f − h| d‖Tj‖+

k

∑
i=1

∫
supp χ

(| f |+ 1)|πi − σi| d
(
‖Tn‖+ ‖∂Tn‖

)]
6

∫
χ| f − h| dµ +

k

∑
i=1

[∫
supp χ

(| f |+ 1)|πi − σi| dν +
∫

supp χ
|πi − σi| dµ

]
Approximating f , πi uniformly on compact subsets of

⋃∞
j=0 Kj by h, σi , our claim follows.

Now define 〈ω : T〉 = limn〈ω : Tα(n)〉 for all ω ∈ Dk(X) . Then T is a (k + 1)-
linear and local current, such that T and ∂T have finite mass ‖T‖ 6 µ , ‖∂T‖ 6 ν . We
need to check the continuity axiom (ii). By finiteness of mass, it suffices to check it for
f ∈ Lipb(X) of bounded support. Then proposition 5.4.1 gives

∣∣〈 f dπ : T〉 − 〈 f dσ : T〉
∣∣ 6

k

∑
i=1

[∫ ∣∣ f · (πi − σi)
∣∣ dµ + Lip( f ) ·

∫
supp f

|πi − σi| ν
]

for all πi, σi ∈ Lip1(X) . This immediately gives the continuity. �

5.4.3. The next step is to introduce the so-called slicing technique: Given a k-dimensional
normal current T , its contraction T dπ for π : X → Rm can be represented as the
integral of (k − m)-dimensional normal currents (‘slices’) concentrated on the fibres of
π . This technique is important for proofs by induction on the dimension of currents.

Slicing Theorem 5.4.4. Let T ∈ Nk(X) , let L ⊂ X be a σ-compact on which T and ∂T
concentrated, and let π : X → Rm be Lipschitz, where m 6 k .

(i). For all x ∈ Rm , there exist 〈T, π, x〉 ∈ Nk−m(X) , such that 〈T, π, x〉 and ∂〈T, π, x〉
are concentrated on L ∩ π−1(x) , x 7→ ‖〈T, π, x〉‖ is weakly Lm measurable,

‖T dπ‖ =
∫

Rm
‖〈T, π, x〉‖ Lm(x) weakly in K(Rm)′ , (∗)

x 7→ 〈T, π, x〉 is weakly Lm measurable, and for all ϕ ∈ K(Rm) ,

T (ϕ ◦ π dπ) =
∫

Rm
〈T, π, x〉ϕ(x) dLm(x) weakly in MFk(X) . (∗∗)

(ii). Whenever L′ ⊂ X is a σ-compact, and Tx ∈ Mk−m(X) are concentrated on L′ ,
satisfy (∗∗) with Tx in place of 〈T, π, x〉 , and x 7→ M(Tx) is Lm summable, then for Lm

a.e. x ∈ Rm , Tx = 〈T, π, x〉 .

(iii). For m = 1 , then for L1 a.e. x ∈ R ,

〈T, π, x〉 = limy→x+
T (1{x<π<y} dπ)

y− x
= (∂T) {π > x} − ∂

(
T {π > x}

)
.

The proof requires a series of lemmata. The first of these is conventionally termed the
‘localisation lemma’.
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Lemma 5.4.5. Let T ∈ Nk(X) and ϕ ∈ Lip(X) . Let St = T {ϕ > t} for t ∈ R and fix a
σ-compact L on which T and ∂T are concentrated. Then, for L1 a.e. t ∈ R ,

(∂T) {ϕ > t} − ∂St =
d
dt

(St dϕ) , ‖∂St‖(ϕ−1(t)) 6
d
dt
‖T dϕ‖{ϕ 6 t} ,

and St and ∂St are concentrated on L .

Proof. Let µ = ‖T‖ + ‖∂T‖ . Fix disjoint compacts (Kj) with µ concentrated on
⋃

j Kj .
Define

gj(t) = µ
(
Kj ∩ {ϕ 6 t}

)
and g(t) =

∞

∑
j=0

gj(t) = µ{ϕ 6 t} .

Since g , gj , and t 7→ f (t) = ‖T dϕ‖{ϕ 6 t} are increasing, the set

T =
{

t ∈ R

∣∣∣∣ g′(t), g′j(t), f ′(t) exist , g′(t) =
∞

∑
j=0

g′j(t) < ∞
}

has full L1 measure. Fix t ∈ T , and let ε` → 0 . Let f` : R → [0, 1] be piecewise
affine, such that 1[t+ε`,∞[ 6 f` 6 1[t,∞[ . Thus, ε` f`(s) = s − t for s ∈ [t, t + ε`] . Define
R` = 1

ε`
· T (1{t<ϕ<t+ε`} dϕ) . Then

∂T ( f` ◦ ϕ)− ∂(T f` ◦ ϕ) = T d( f` ◦ ϕ) =
1
ε`
· T (1{t<ϕ6t+ε`} dϕ) = R`

by corollary 5.2.11 and locality. Since d2ω = (1, 1, ω0, . . . ) , ∂2 = 0 on currents. Thus,

∂R` = ∂(∂T ( f` ◦ ϕ)) = −∂T d( f` ◦ ϕ) = − 1
ε`

∂T (1{t<ϕ6t+ε`}) ,

by essentially the same argument as above. Let K j =
⋃

i6j Ki . Then

(‖R`‖+ ‖∂R`‖)(X \ K j) =
1
ε`
· µ

(
{t < ϕ 6 t + ε`} \ K j) 6 ∑

i>j
g′i(t) .

Hence, by theorem 5.4.2, extracting a subsequence, (R`) converges to some R ∈ Nk−1(X)
such that ‖R‖ + ‖∂R‖ is concentrated on

⋃
j Kj . Since f` ◦ ϕ → ϕ in L1(µ) , we find

R = ∂T {ϕ > t} − ∂(T {ϕ > t}) , and the limit is independent of the subsequence

chosen, so R =
d
dt

St dϕ . Moreover,

‖∂(T {ϕ > t})‖(ϕ−1(t)) = ‖R‖(ϕ−1(t)) 6 M(R) 6 lim inf` M(R`) 6 f ′(t)

since mass is l.s.c. with respect to pointwise convergence. �

5.4.6. The second lemma required is an improvement of the representation of mass in
theorem 5.2.8. To that end, recall that for Borel measures µ, µj one says that µ is the
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supremum of (µj)j∈J , µ =
∨

j∈J µj , if for all B ∈ B(X) ,

µ(B) = sup
{

∑
j∈J

µj(Bj)
∣∣∣∣ (Bj)j∈J Borel partition of B

}
.

Lemma 5.4.7. Let A ⊂ X be σ-compact. There exists a countable D ⊂ Lipb(X)∩ Lip1(X)
which is dense in the sense that any bounded 1-Lipschitz function is the uniform limit
on compact of a uniformly bounded sequence in D , such that

‖T‖ =
∨{

‖T dπ‖
∣∣ πi ∈ Dk} for all T ∈ Mk(X) concentrated on A .

Proof. Let A =
⋃

j Kj with Kj ⊂ X compact and write X = Lipb(X) ∩ Lip1(X) . From
theorem 5.2.8, the equation is valid for any current T , with X in place of D . For each
j ∈ N , we may choose a countable subset Dj ⊂ X such that f ∈ X is the uniform limit
on Kj of a bounded sequence in Dj . Set D =

⋃
j Dj and fix T ∈ Mk(X) concentrated on

A . Then it suffices to prove that

‖T dπ‖ Kj 6 µj =
∨{

‖T dτ‖
∣∣ τi ∈ Dj

}
for all π ∈ Xk .

Let f ∈ Bb(X) vanish outside Kj , and let (πm
i ) ⊂ Dj) be uniformly bounded, such that

πm
i → πi uniformly on Kj . Let

τm
i (x) = infy∈Kj

(
πm

i (y) + d(x, y)
)

and τi =
∫

y∈Kj

(
πi(y) + d(x, y)

)
.

Then τ1, τm
i ∈ Lip1(X) , τm

i = πm
i on Kj , and τm

i → τi pointwise. By locality and conti-
nuity,

〈 f dπ : T〉 = 〈 f dτ : T〉 = limm〈 f dτm : T〉 = limm〈 f dπm : T〉 6
∫
| f | dµj .

This implies our claim and thus, the lemma. �

Proof of theorem 5.4.4. First, let m = 1 , and set Sx = ∂T {π > x} − ∂(T {π > x}) .

By lemma 5.4.5, we have Sx =
d

dx
T (1{π>x} dπ) for L1 a.e. x ∈ R . This implies that

Sx is concentrated on L ∩ π−1(x) , and moreover, for all ω ∈ Dp(X) , 0 6 p < k ,

M(Sx ω) 6
d

dx
‖T (ω ∧ dπ)‖({π 6 x}) for L1 a.e. x ∈∈ R .

Hence, by theorem 3.2.1,

∫
M(Sx ω) dx 6

∫ d
dx
‖T (ω ∧ dπ)‖({π 6 x}) dx 6 M(T (ω ∧ dπ)) . (∗ ∗ ∗)

We now check (∗∗) in this case. So, let ϕ be continuous of compact support, and set
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γ(t) =
∫ t
−∞ ϕ dL1 . Note

∫
R

ϕ(x)1{π>x}(y) dx =
∫ π(y)

−∞
ϕ(x) dx = γ(π(y)) .

Thus, for f dτ ∈ Dk−1(X) , we obtain (since γ′ = ϕ)∫
R
〈 f dτ : Sx〉ϕ(x) dx =

∫
R
〈1{π>x} · f dτ : ∂T〉ϕ(x) dx−

∫
R
〈1{π>x} d f ∧ dτ : T〉ϕ(x) dx

= 〈γ ◦ π · f dτ : ∂T〉 − 〈γ ◦ π d f ∧ dτ : T〉
= 〈 f d(γ ◦ π) ∧ dτ : T〉 = 〈 f · (ϕ ◦ π) dπ ∧ dτ : T〉
= 〈 f dτ : T (ϕ ◦ π) dπ〉 ,

which is just (∗∗). In particular,

|〈 f dτ : T dπ〉| =
∣∣∣∣∫ 〈 f dτ : Sx〉 dx

∣∣∣∣ 6
k−1

∏
j=1

Lip(τj) ·
∫∫

| f | d‖Sx‖ dx .

Hence, ‖T dπ‖ 6
∫
‖Sx‖ dx . Together with (∗ ∗ ∗), this implies the weak measurabil-

ity of x 7→ ‖Sx‖ and (∗). This completes the proof of existence in case m = 1 .

Assuming the existence statement is true for some 1 6 m 6 k − 1 , we intend to
deduce it for m + 1 . To that end, write π = (π1, π̄) with π1 ∈ Lip(X) , and x = (t, y) .
The statement being true for m and for 1 , we may define Tt = 〈T, π1, t〉 and Tx =
〈Tt, π̄, y〉 . By assumption, we have∫∫

‖Tx‖ dy dt =
∫
‖Tt dπ̄‖ dt = ‖Tt (dπ1 ∧ dπ̄)‖ = ‖T dπ‖ .

The Lm+1-measurability follows from Fubini’s theorem 1.6.2. Similarly, for ϕ = ϕ1 ⊗ ϕ̄

where ϕ1 ∈ K(R) and ϕ̄ ∈ K(Rm) ,∫
Tx ϕ(x) dx =

∫∫
T(t,y) ϕ̄(y) dyϕ1(t) dt =

∫
Tt (ϕ̄ ◦ π̄ dπ̄)ϕ1(t) dt

= T
(
(ϕ1 ◦ π1) · (ϕ̄ ◦ π̄) dπ1 ∧ dπ̄

)
= T (ϕ ◦ π dπ) .

Since K(R) ⊗ K(Rm) is dense in K(Rm+1) for the topology induced by L1(Rm) , the
equation (∗∗) follows. Hence, we have proved existence.

As to uniqueness, fix f dτ ∈ Dk−m(X) . Let $ε be a Dirac sequence. Then (∗∗) gives

〈 f dτ : Tx〉 = limε→0+

∫
〈 f dτ : Ty〉$ε(y− x) dy = limε→0+〈 f $ε(π − x) dτ ∧ dπ : T〉

for L1 a.e. x ∈ Rm . Hence 〈ω : Tx〉 is determined a.e. uniquely for fixed ω = f dτ . Now
fix D as in lemma 5.4.7, applied to the σ-compact A = L ∪ L′ , and let N ⊂ Rm be an Lm
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negligible Borel set such that

〈 f dτ : Tx〉 = 〈 f dτ : 〈T, π, x〉〉 for all x ∈ Rm \ N , f ∈ Lipb(X) , τ ∈ Dk .

Now, ‖(Tx − 〈T, π, x〉) dτ‖ = 0 for all τ ∈ Dk implies ‖Tx − 〈T, π, x〉‖ = 0 by the
lemma. Hence the assertion. �

5.4.8. Using approximation by normal currents, we extend the slicing operators to recti-
fiable currents.

Slicing Theorem for Rectifiable Currents 5.4.9. Let T ∈ Rk(X) (resp. T ∈ Ik(X)) and
π ∈ Lip(X, Rm) , 1 6 m 6 k . There exists 〈T, π, x〉 ∈ Rk−m(X) (resp. 〈T, π, x〉 ∈
Ik−m(X)) concentrated on ST ∩ π−1(x) , such that equations (∗) and (∗∗) from slicing
theorem for rectifiable currents 5.4.4 hold,

〈T B, π, x〉 = 〈T, π, x〉 B for all B ∈ B(X) ,

and ∫
S(〈T, π, x〉) dx 6

ωmωk−m

ωk
·

m

∏
j=1

Lip(πj) · S(T) .

Moreover, whenever Tx ∈ Mk−m(X) are concentrated on L ∩ π−1(x) for some σ-
compact L ⊂ X , satisfy (∗∗), and x 7→ M(Tx) is Lm summable, then Tx = 〈T, π, x〉 for
Lm a.e. x ∈ Rm .
We require the following lemma.

Lemma 5.4.10. Let A ⊂ X be σ-compact. There exists a countable family U of open
subsets of X such that for all open U ⊂ X , there exists (Uj) ⊂ U such that 1U = limj 1Uj

in L1(µ) for any finite Borel measure µ concentrated on A .

Proof. Write A =
⋃

j Kj with Kj ⊂ X compact. Let D be as in lemma 5.4.7 and let
U =

{
{π > 1

2}
∣∣ π ∈ D

}
. Let U ⊂ X be open. Then 1U = supj f j where f j+1 > f j > 0

are 1-Lipschitz functions. Let gj ∈ D , | f j − gj| 6 1
j on Kj . By Lebesgue’s dominated

convergence theorem 1.5.7,

1U = limj 1
{ f j>

1
2 }

in L1(µ)

whenever µ is concentrated on A . �

Proof of theorem 5.4.9. First, assume X = E∗ for E separable Banach space. Then theo-
rem 5.3.5 shows that there exist Tj ∈ Nk(X) , such that T = ∑∞

j=0 Tj in Mk(X) . Thus

∫ ∞

∑
j=0

M(〈Tj, π, x〉) dLm(x) 6
m

∏
i=1

Lip(πi) ·
∞

∑
j=0

M(Tj) =
m

∏
i=1

Lip(πi) ·M(T) < ∞ .

Thus, for Lm a.e. x ∈ Rm , ∑j〈Tj, π, x〉 converges in Mk−m(X) to some 〈T, π, x〉 . Then
‖〈T, π, x〉‖ � Hk−m , 〈T, π, x〉 is concentrated on ST ∩ π−1(x) , and equations (∗) and
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(∗∗) hold. In particular, 〈T, π, x〉 is rectifiable. In the general case, T is concentrated on
supp T , which is separable by theorem 1.2.5. Hence, the latter can be embedded into
`∞ = (`1)′ , and we obtain the slices by applying the isometric embedding.

Note that 〈T, π, x〉 is concentrated on ST for Lm a.e. x ∈ R . Hence, from proposi-
tion 5.3.6 and theorem 2.4.5, we deduce

∫
S(〈T, π, x〉) dx =

∫
Hk−m(ST ∩ π−1(x)) dx 6

ωmωk−m

ωk
·

m

∏
j=1

Lip(πj)S(T) ,

which gives the size inequality and thus establishes existence in the rectifiable case.
Uniqueness follows as in theorem 5.4.4. This implies, for fixed B ∈ B(X) ,

〈T B, π, x〉 = 〈T, π, x〉 B for Lm a.e. x ∈ Rm .

Let U be as in lemma 5.4.10, applied to ST . There exists an Lm Borel set N ⊂ Rm such
that 〈T U, π, x〉 = 〈T, π, x〉 U for all x ∈ Rn \N , U ∈ U . Then the assertion follows
for any open set, and then, by Borel regularity, for any Borel set.

Remains to treat the integer-rectifiable case. Suffices to consider T = ϕ•[[ϑ]] for ϑ ∈
L1(Rk, Z) of compact support. From the construction of slices in theorem 5.4.4, we find
that 〈[[ϑ]], π, x〉 are integer-rectifiable, hence so are Tx = ϕ•〈[[ϑ]], π, x〉 . We apply the
uniqueness statement to deduce 〈T, π, x〉 = Tx for Lm a.e. x . �

5.4.11. The following proposition on iterated slices and projections of slices follow from
uniqueness.

Proposition 5.4.12. Let T ∈ Mk(X) be rectifiable or normal, 1 6 m 6 k , and fix a map
π ∈ Lip(X, Rm) .

(i). For any 1 6 n 6 k−m and any ϕ ∈ Lip(X, Rn) , we have

〈T, (π, ϕ), (t, y)〉 =
〈
〈T, π, t〉, ϕ, y

〉
for Lm+n a.e. (t, y) ∈ Rm+n .

(ii). Let T be rectifiable. For any n > m and ϕ ∈ Lip(X, Rn−m) ,

q•〈(ϕ, π)•T, p, x〉 = ϕ•〈T, π, x〉 for Lm a.e. x ∈ Rm ,

where p : Rn → Rm and q = 1− p : Rn → Rn−m are given by

p(x) = (xn−m, xn−m+1, . . . , xn) for all x ∈ Rn .
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5.5 Closure and Boundary Rectifiability Theorems

5.5.1. As before, we assume that X is complete and contains a dense subset whose cardi-
nality is an Ulam number. The following theorem characterises the (integer) rectifiability
of normal currents through the (integer) rectifiability of their slices.

Theorem 5.5.2. Let T ∈ Nk(X) . Then T ∈ Rk(X) if and only if for all π ∈ Lip(X, Rk) ,

〈T, π, x〉 ∈ R0(X) for Lk a.e. x ∈ Rk . (∗)

Similarly, T ∈ Ik(X) if and only if condition (∗) holds for I0(X) (or I0(X)) in place of
R0(X) .

5.5.3. Our strategy of proof is the following: Show that the slice map x 7→ 〈T, π, x〉 is
a metric BV function (to be defined). This implies that ‖T dπ‖ is concentrated on a
countably k-rectifiable set. A separability argument (in fact, lemma 5.4.7) then gives the
corresponding statement for ‖T‖ , and this implies the rectifiability of T . To make this
strategy rigorous, we need to establish the necessary facts on metric BV functions.

5.5.4. A metric space S is said to be weakly separable if there exists a countable family
Φ ⊂ Lipb(S) ∩ Lip1(S) such that

d(x, y) = supϕ∈Φ|ϕ(x)− ϕ(y)| for all x, y ∈ S .

Fix a weakly separable metric space S , together with a separating family Φ . Then a
function f : Rk → S is said to be of metric bounded variation, if for all ϕ ∈ Φ , ϕ ◦ f is on
locally bounded variation, and

‖∇ f ‖ =
∨

ϕ∈Φ
|∇ϕ ◦ f |

is a finite Borel measure. We denote the set of these functions by MBV(Rk, S) . We shall
see presently that this definition is independent of the choice of Φ .

Proposition 5.5.5. Let f ∈ MBV(Rk, S) and ψ ∈ Lipb(S) ∩ Lip1(S) . Then ψ ◦ f is locally
of bounded variation, and |∇(ψ ◦ f )| 6 ‖∇ f ‖ . In particular,

‖∇ f ‖ =
∨

ψ∈Lipb(S)∩Lip1(S)
|∇(ψ ◦ f )| .

Proof. First, let k = 1 , I ⊂ R an open interval, and g : I → R a bounded function. Let
Lg be the Lebesgue set, i.e. the set of points where the precise representative of g exists
and equals g , cf. theorem 1.9.9. Let |∇g|(I) be the total variation of g if g is locally of
bounded variation, and ∞ otherwise. Then

|∇g|(I) = sup
{p−1

∑
i=0
|g(ti+1)− g(ti)|

∣∣∣∣ t0 < t1 < · · · < tp , ti ∈ I \ N
}
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whenever N is a Lebesgue zero set containing the complement of Lg . (This is the so-
called essential total variation.) This follows by similar arguments as in the proof of
theorem 3.2.1.

In particular, the set of point masses of |∇(ϕ ◦ f )| is L1 negligible for any ϕ ∈ Φ . Let

N = I \ Lψ◦ f ∪
⋃

ϕ∈Φ

[
I \ Lϕ◦ f ∪ {t ∈ I||∇(ϕ ◦ f )|(t) > 0}

]
.

Thus, because ψ is 1-Lipschitz,

|(ψ ◦ f )(t)− (ψ ◦ f )(s)| 6 d
(

f (t), f (s)
)

= sup
ϕ∈Φ

|(ϕ ◦ f )(t)− (ϕ ◦ f )(s)| 6 ‖∇ f ‖
(
]s, t[

)
for all s < t , s, t ∈ I \ N . Thus, |(ψ ◦ f )|(I) 6 ‖∇ f ‖(I) . Standard approximation
arguments using Borel regularity entail the claim in case k = 1 .

Now, let k > 1 . For any function g : Rk → R of locally bounded variation, and any
e ∈ Sk−1 , x ∈ e⊥ , define

ge,x(t) = g(x + te) and Ve,x
g (B) = |∇ge,x|

{
t ∈ R

∣∣ x + te ∈ B
}

for all B ∈ B(Rk) .

Moreover, let

|∇e f |(B) =
∫

e⊥
Ve,x

g (B) dHk−1(x) for all B ∈ B(Rk) .

Then Fubini’s theorem 1.6.2 and the invariance of Lk under translation and orthogonal
transformations, which follows from Lk = Hk and the corresponding statements for
Hk (theorem 2.2.4), show that for all relatively compact open subsets U ⊂ Rk and all
ϕ ∈ C(1)

c (R) , |φ| 6 1 ,∫
e⊥

∫
(e:Ux)

g(x + te)ϕ′(t) dt dHk−1(x) =
∫

U
g(x)ϕ′

(
(e : x)

)
Lk(x) 6 |∇g|(U) ,

where Ux = (x + Re) ∩U . By standard approximation arguments, we find

|∇g| =
∨

e∈Sk−1 |∇eg| .

By the case k = 1 , we have Ve,x
ψ◦ f 6

∨
ϕ∈Φ Ve,x

ϕ◦ f for all e ∈ Sn−1 , x ∈ e⊥ . For e ∈ Sk−1 ,

|∇e(ψ ◦ f )| =
∫

e⊥
Ve,x

ψ◦ f dHk−1(x) =
∫

e⊥

∨
ϕ∈Φ

Ve,x
ϕ◦ f dHk−1(x)

=
∨

ϕ∈Φ

∫
e⊥

Ve,x
ϕ◦ f dHk−1(x) =

∨
ϕ∈Φ

|∇e(ϕ ◦ f )| 6 ‖∇(ϕ ◦ f )‖ ,

where we have used σ-additivity and monotone convergence to exchange
∨

and the
integral. Taking the

∨
e∈Sk−1 , the assertion follows. �
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5.5.6. Consider the space Lipb(X) . It is a Banach space, endowed with the flat norm

F(ϕ) = ‖ϕ‖∞ + Lip(ϕ) for all ϕ ∈ Lipb(X) .

Dually, the space of 0-dimensional currents M0(X) can be endowed with the flat norm

F(T) = supϕ∈Lipb(X) , F(ϕ)61|〈ϕ : T〉| for all T ∈ M0(X) .

With this norm, M0(X) is weakly separable whenever X is weakly separable.
In fact, if X is weakly, separable, then M0(X) is isometrically embedded into M0(`∞) .

Furthermore, ⋃
n∈N

{
ϕ ∈ Lipb(Rn)

∣∣ F(ϕ) 6 1
}

is a norm-determining subset and separable subset of the unit ball Lipb(`∞) .

Rectifiability for MBV 5.5.7. Let X be weakly separable, let S = M0(X) , endowed with
the flat norm, and let T ∈ MBV(Rk, S) . Then there exists N ⊂ Rk , Lk(N) = 0 , such that
for all compact K ⊂ X ,

RK =
⋃

x∈Rk\N

{
y ∈ K

∣∣ ‖Tx‖(y) > 0
}

is contained in a countably k-rectifiable subset of X .

5.5.8. The proof requires a version of the mean value inequality. To that end, for any
real-valued function F defined on the bounded subsets of X , let

M(F)(x) = supr>0
F
(

B(x, r)
)

ωkrk for all x ∈ X

define the maximal function of F .

Lemma 5.5.9. Let S be weakly separable and f ∈ MBV(Rk, S) . Define

ck =
Lk(B(x, ‖x− y‖) ∩ B(y, ‖x− y‖)

)
‖x− y‖k for all x, y ∈ Rk , x 6= y ,

a constant depending only on k . Then there exists N ⊂ Rk , Lk(N) = 0 , such that

d
(

f (x), f (y)
)

6
ωk

ck

(
M(‖∇ f ‖)(x) + M(‖∇ f ‖)(y)

)
· ‖x− y‖ for all x, y ∈ Rk \ N .

Proof. Let g : Rk → R be locally of bounded variation and write Lg for its set of Lebesgue
points, cf. corollary 1.9.12. By apply the change of variable formula (corollary 4.1.6) to
the bi-Lipschitz function [0, 1]× Sk−1 → B(x, r) : (t, e) 7→ x + tre , we obtain

1
ωkrk

∫
B(x,r)

|g(x)− g(y)|
‖x− y‖ dLk(y) =

1
ωkrk

∫ 1

0

∫
Sk−1

t1−k · g(x)− g(x + rte)
tr

dHk−1(e) dt
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6
∫ 1

0

|∇g|(B(x, tr))
ωk(tr)k dt 6 M(|∇g|)(x)

for every x ∈ Lg . Let x, y ∈ Lg , x 6= y , and set r = ‖x− y‖ . Then

|g(x)− g(y)|
r

1
rkck

·
∫

B(x,r)∩B(y,r)

|g(x)− g(y)|
r

dLk(z)

6
1

rkck
·
∫

B(x,r)∩B(y,r)

[
|g(x)− g(z)|
‖x− z‖ +

|g(z)− g(y)|
‖z− y‖

]
dLn(z) .

because ‖x− z‖, ‖y− z‖ 6 r . We obtain

|g(x)− g(y)| 6 ωk

ck
·
[
M(|∇g|)(x) + M(|∇g|)(y)

]
· ‖x− y‖ .

The assertion follows by letting g = ϕ ◦ f , ϕ ∈ Φ , where Φ is any countable separating
family for S , and defining N =

⋃
ϕ∈Φ Rk \ Lϕ◦ f . �

Proof of theorem 5.5.7. Apply lemma 5.5.9 with S = M0(X) to obtain a negligible set
M ⊂ Rk and define N = M ∪ {M(‖∇T‖) = ∞} . Let K ⊂ X be compact, fix ε, δ > 0 ,
and let

Aεδ =
{

M(‖∇T‖) < 1
2ε

}
∩

⋂
y∈K

{
x ∈ Rk \ N

∣∣ ‖Tx‖(y) > ε ⇒ ‖Tx‖(B(y, 3δ) \ y) 6 ε
3

}
and

Rεδ =
{

x ∈ K
∣∣ ∃y ∈ Aεδ : ‖Tx‖(y) > ε

}
.

Then RK =
⋃

ε,δ>0 Rεδ , and since it suffices to consider a countable subfamily of the sets
Rεδ , it suffices to prove that these are contained in countably k-rectifiable subsets of X .

So let B ⊂ Rεδ be of diameter 6 δ . For x1, x2 ∈ B , and y1, y2 ∈ Aεδ , ‖Txi‖(yi) > ε ,
we claim

d(x1, x2) 6
3ck(δ + 1)

ε3 · ‖y1 − y2‖ .

In fact, let d = d(x1, x2) . Let φ ∈ Lip1(X) , 1 6 φ 6 d , such that φ = d(xy, x1) on B(x1, d) ,
φ = 0 outside B(x1, 2δ) . Then

|〈φ : Ty1〉| 6
∫

B(2δ)\x
|φ| d‖Ty1‖ 6

εd
3

,

and
|〈φ : Ty2〉| > |〈d : Ty2〉| − |〈d− φ : Ty2〉| > εd− εd

3
.

Hence,

d(x1, x2) 6
3
ε
·
∣∣〈φ : Ty1〉 − 〈φ : Ty2〉

∣∣ 6
3(d + 1)

ε
· F

(
Ty1 − Ty2

)
6

3ck(d + 1)
ωkε3 · ‖y1 − y2‖ ,
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by the inequality from the lemma and because the maximal function is less than 1
2ε . This

proves the claim.

By our assumptions on Aεδ , the map f : y 7→ x is well-defined on a subset of Aεδ ,
and surjective onto B . By our claim, it is Lipschitz. Since X is weakly separable, f can
be extended to a Lipschitz function Rk → `∞ containing B in its image. Hence, B is
contained in a countably k-rectifiable subset, and by weak separability, we find that this
also true for Rεδ . �

Now we can prove our theorem on the rectifiability of normal currents.

Proof of theorem 5.5.2. Let T ∈ Nk(X) . Then T is concentrated on a separable subspace,
so by locality, we may assume that X is weakly separable. Let S = M0(X) , endowed
with the flat norm. We contend that x 7→ Tx = 〈T, π, x〉 is contained in MBV(Rk, S) . It
is sufficient to do this under the assumption πi ∈ Lip1(X) .

Let ψ ∈ C(1)
c (Rk) and ϕ ∈ Lipb(X) , F(ϕ) 6 1 . By the defining equation for the slices,

the chain rule, and corollary 5.2.11,

(−1)i−1
∫
〈ϕ : Tx〉∂iψ(x) dLk(x) = (−1)i−1〈ϕ · ∂iψ ◦ π : T dπ〉

= 〈ϕ d(ψ ◦ π) ∧ dπ̂i : T〉 = 〈ϕ · ψ ◦ π : ∂T〉 − 〈ψ ◦ π dϕ ∧ dπ̂i : T〉

6
∫
|ψ ◦ π| d

(
‖T‖+ ‖∂T‖

)
where dπ̂i = dπ1 ∧ · · · ∧ dπi−1 ∧ dπi+1 ∧ · · · ∧ dπk . Hence, x 7→ 〈ϕ : Tx〉 is locally of
bounded variation, and x 7→ Tx lies in MBV(Rk, S) with

‖∇Tx‖ 6 k · π
(
‖T‖+ ‖∂T‖

)
.

Now for the rectifiable case. By theorem 5.4.9, the condition stated in the theorem is
necessary. Conversely, let L ⊂ X be a σ-compact on which T and ∂T are concentrated.
Fix π ∈ Lip(X, Rk) . By theorem 5.5.7, there exists a negligible Nπ ⊂ Rk and a countably
k-rectifiable Rπ ⊂ X containing

⋃
x∈Rk\Nπ

{
y ∈ L

∣∣ ‖〈T, π, x〉‖(y) > 0
}

.

Then

‖T dπ‖(X \ Rπ) = ‖T dπ‖(L \ Rπ) =
∫

Rk
‖〈T, π, x〉‖(L \ Rπ) dx = 0 ,

since, as follows from normality, ‖〈T, π, x〉‖ � H0 . Hence, T dπ is concentrated
on Rπ . By lemma 5.4.7, T is concentrated on a countably k-rectifiable subset. Since
‖T‖ � Hk by normality, we have T ∈ Rk(X) .

Necessity in the integer-rectifiable case also follows from theorem 5.4.9. Conversely,
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for any open U ⊂ X and any π ∈ Lip(X, Rk) , we have

〈π•(T U), id, x〉 = π•〈T U, ϕ, x〉 = π•
(
〈T, ϕ, x〉

)
∈ I0(Rk) .

But the slices of π•(T U) = [[ϑ]] ∈ Nk(Rk) with respect to id are just ϑ(x)δx . Hence
the integer-rectifiability of its slices immediately implies π•(T U) ∈ Ik(Rk) , by theo-
rem 5.3.3 (i). Thus, T ∈ Ik(X) , and by normality, T ∈ Ik(X) . �

We come the formulation of the all-important closure theorem.

Closure Theorem 5.5.10. Let T, (Tj) ⊂ Nk(X) such that T = limj Tj pointwise. If Tj ∈
Rk(X) and

supj N(Tj) + S(Tj) < ∞ ,

then T ∈ Rk(X) . If Tj ∈ Ik(X) and is bounded in Nk(X) , then T ∈ Ik(X) .

We need the following lemma in the theorem’s proof.

Lemma 5.5.11. Let T, Tj ∈ Nk(X) such that (Tj) is bounded and converges pointwise to T
and fix π ∈ Lip(X) . Then, for L1 a.e. t ∈ R , there exists a subsequence α = αt , such that
(〈Tα(j), π, t〉) is bounded in Nk−1(X) converges pointwise to 〈T, π, t〉 . Moreover, if the
Tj are rectifiable and (S(Tj)) is bounded, then α can be chosen such that (S(〈Tα(j), π, t〉))
is bounded.

Proof. First prove the existence of a subsequence α such that 〈Tα(j), π, t〉 → 〈T, π, t〉
pointwise for L1 a.e. t ∈ R . Recall

〈T, π, t〉 = ∂T {π > t} − ∂
(
T {π > t}

)
,

so it suffices to prove the convergence of Tα(j) {π > t} and ∂Tα(j) {π > t} . Define
µj = π•(‖Tj‖+ ‖∂Tj‖) and choose α such that µα(n) is weak∗ convergent in Cc(Rk)′ to
some finite Borel measure µ . If t ∈ R is not an atom of µ , then

limδ→0+ lim supj µα(n)([t− δ, t + δ]) 6 limδ→0+ µ([t− δ, t + δ]) = 0 .

Define χδ(x) = max(0, min(1, δ−1(π(x)− t))) for all x ∈ X . Then χδ is Lipschitz, and
for f ∈ Lipb(X) , τi ∈ Lip1(X) ,

∣∣〈 f dτ : Tα(j) χδ − Tα(j) {π > t}〉
∣∣ 6

∫
π−1[t,t+δ]

| f | d‖Tα(j)‖ ,

and we obtain Tα(j) {π > t} → T π > t pointwise. The same argument works for
∂Tα(j) . Furthermore, by Fatou’s lemma (theorem 1.5.5)

∫
R

lim infj N(〈Tα(j), π, t〉) dt 6 lim infj

∫
R

N(〈Tα(j), π, x〉) dt

= lim infj N(Tα(j) dπ) 6 Lip(π) · supj N(Tj) < ∞ .
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Hence, for a.e. t ∈ R , there exists a subsequence β = βt of α such that (N(〈Tβ(j), π, t〉))
is bounded. Finally, for bounded sizes, as for the norms, we use the size estimate in
theorem 5.4.9 to obtain subsequences for which the slices’ sizes are bounded. �

Proof of theorem 5.5.10. The proof is by induction on k . First, let k = 0 . In the rectifiable
case, let A ⊂ supp T be any finite set. Then there is ε > 0 such that that the balls B(a, ε) ,
a ∈ A , are disjoint. By the lower semi-continuity of mass, for large j , each of the B(a, ε)
intersects supp Tj , i.e. Tj = ∑a∈Aj

αajδa , and for all a ∈ A , there exists a′ ∈ Aj such that
d(a, a′) 6 ε . By the bounedness of size, #Aj is bounded, and it follows that T is a finite
sum of point masses. Thus, T ∈ R0(X) .

In the integer-rectifiable case the bound on size follows from the bound on mass,
since for T = ∑j αjδxj , ‖T‖ = ∑j|αj|δxj . Thus, the limit current is rectifiable, any we need
only to see that its coefficients are integral, we is immediate from pointwise convergence.

Back in the rectifiable case, let k > 1 and assume the statement is true for k− 1 . We
check that the assumptions of theorem 5.5.2 are verified. Write π = (π1, π̄) , and set

S = T dπ1 , Sj = Tj dπ1 , St = 〈T, π1, t〉 , Sjt = 〈Tj, π1, t〉 .

From lemma 5.5.11, we find that for L1 a.e. t ∈ R , St is the limit of a subsequence of Sjt

with bounded sizes and bounded norms. By the inductive hypothesis, St ∈ Rk−1(X) for
a.e. t . For any such t , 〈T, π, (t, y)〉 = 〈St, π̄, y〉 ∈ R0(X) for Lk−1 a.e. y ∈ Rk−1 . Hence
〈T, π, x〉 ∈ R0(X) for Lk a.e. x ∈ Rk . By theorem 5.5.2, this implies T ∈ R0(X) . The
integer-rectifiable case follows in the same manner. �

Boundary Rectifiability Theorem 5.5.12. Let T ∈ Ik(X) . Then ∂T ∈ Ik−1(X) .

Proof. Since ∂T = 0 for k = 0 , only the case k > 1 is interesting. Moreover, normality of
∂T is clear since ∂2T = 0 , so we only need to establish integer-rectifiability. We proceed
by induction on k , and begin with k = 1 . Let U ⊂ X be open and set ϕ = dist(xy, X \U) .
Then

〈1{ϕ>t} : ∂T〉 = 〈1 : ∂T {ϕ > t}〉
= 〈1 : ∂(T {ϕ > t})〉+

〈
1 : 〈T, ϕ, t〉

〉
=

〈
1 : 〈T, ϕ, 1〉

〉
∈ Z

for L1 a.e. t > 0 , by locality, theorem 5.3.3 (i), theorem 5.4.4 (iii), and theorem 5.4.9.
By continuity of ∂T , we obtain 〈1U : ∂T〉 = 〈1ϕ>0 : ∂T〉 ∈ Z . By theorem 5.3.3 (i),
∂ ∈ I0(X) .

Assuming the statement for k , we prove it for k + 1 . Indeed, suffices to prove
〈∂T, π, x〉 integer-rectifiable for π ∈ Lip(X, Rk) , by theorem 5.5.2. Write π = (π1, π̄) .
Then 〈∂T, π1, t〉 = −∂〈T, π1, t〉 is generically integer-rectifiable by the inductive hypoth-
esis and the assumption on T . Then so is 〈∂T, π, (t, y)〉 = 〈〈∂T, π1, t〉, π̄, y〉 . Hence
follows the assertion. �
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Besides the central closure and boundary rectifiability theorems, we briefly digress to
give the following non-trivial characterisations of rectifiability as further corollaries to
the rectifiability of slices theorem 5.5.2.

Theorem 5.5.13. Let T ∈ Nk(X) . Then T ∈ Rk(X) if and only if it is concentrated on a
Borel set σ-finite for Hk .

Proof. The necessity is clear. Let S be an Hk σ-finite set on which T is concentrated. Let
π ∈ Lip(X, Rk) . Since T is concentrated on a separable set, we find by corollary 2.2.3
that for Lk a.e. y ∈ Rk , S ∩ π−1(y) is countable. Since the slices 〈T, π, x〉 are concen-
trated on S ∩ π−1(x) , we find 〈T, π, x〉 ∈ R0(X) , and theorem 5.5.2 gives the desired
conclusion. �

Theorem 5.5.14. Let T ∈ Nk(X) . Then the following holds.

(i). We have T ∈ Ik(X) if and only if ϕ•T ∈ Ik(Rk+1) for all ϕ ∈ Lip(X, Rk+1) .

(ii). We have T ∈ Ik(X) if and only if π•(T B) ∈ Ik(Rk) for all π ∈ Lip(X, Rk) and
B ∈ B(X) .

(iii). If X = Rn with any norm, then T ∈ Rk(X) if and only if ϕ•T ∈ Rk(Rk+1) for all
ϕ ∈ Lip(X, Rk+1) .

Proof. All the conditions are necessary. In every case, it suffices to prove Tx = 〈T, π, x〉
generically (integer-) rectifiable for any fixed π ∈ Lip(X)Rk , by theorem 5.5.2. Let U be
the countable family of open sets from lemma 5.4.10 and denote ϕU = dist(xy, X \U) for
U ∈ U .

In the situation of (i), let q : Rk+1 → R be the projection onto the first component, and
p : Rk+1 → Rk the projection onto the last k components. Applying proposition 5.4.12,
we obtain an Lk-negligible N ⊂ Rk such that for all x ∈ Rk \ N and U ∈ U ,

ϕU•Tx = q•〈(ϕU , π)•T, p, x〉 ∈ I0(R) .

In particular, 〈1U : Tx〉 = 〈1]0,∞[ : ϕU•T〉 ∈ Z for all x ∈ Rk \ N and U ∈ U . The same
is true for B ∈ B(X) in place of U . Thus follows (i). Statements (ii) and (iii) are similar,
where for (iii) one proceeds as in the proof of theorem 5.3.3 (iii). �

Remark 5.5.15. To this point, the presentation follows [AK00a] closely. We also mention
that [Amb94, proof of th. 2.3] was essential for the comprehension of [AK00a, lem.7.3,
th. 7.4], which are lemma 5.5.9 and theorem 5.5.7 in our enumeration.

5.6 Generalised Plateau’s Problem

5.6.1. As usual, we assume that X is metric, complete, and contains a dense subset
of Ulam cardinality. The following theorem, the solution of DeGiorgi’s generalised
Plateau’s problem, is the culmination of our study of currents.
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Existence of Minimising Currents 5.6.2. Let X be a Hilbert space and S ∈ Ik(X) , such
that ∂S = 0 and supp S is compact. Then there exists T ∈ Ik + 1(X) such that ∂T = S , T
has compact support, and

M(T) = inf
{

M(R)
∣∣ R ∈ Ik+1(X) , ∂R = S

}
.

Remark 5.6.3. Theorem 5.6.2 is not the most general setting in which Plateau’s problem
can be solved. Ambrosio and Kirchheim [AK00a, th. 10.6] solve it for so-called isoperi-
metric Banach spaces Y = E∗ where E is separable. However, their proof requires the use
of Gromov’s compactness theorem. Wenger [Wen04] circumvents the use of this theo-
rem, thereby showing that any Banach space is isoperimetric. He then proceed to extend
the solution of Plateau’s problem to all dual Banach spaces (not necessarily weak∗ sep-
arable) and all Hadamard spaces (i.e. non-positively curved and geodesically complete
spaces).

5.6.4. The essential ingredients in the theorem’s proof, the compactness of normal cur-
rents and the closure theorem, have already been assembled. The sole remaining step
is the existence of solutions of the equation ∂T = S with some control on their mass,
commonly refered to as the existence of filling currents.

Cone Construction 5.6.5. Let T ∈ Nk(X) , and define, for t ∈ [0, 1] , metric functionals
t× T on [0, 1]× X by

〈 f dπ : t× T〉 = 〈 ft dπt : T〉 where ft = f (t, xy) and dπt = dπ1t ∧ · · · ∧ dπkt .

Furthermore, define the cone of T to be the metric function [0, 1]× T given by

〈 f dπ : T × [0, 1]〉 =
k+1

∑
j=1

(−1)j+1
∫ 1

0

〈
ft

∂πjt

∂t
dπ̂it : T

〉
dt .

If supp T is bounded, then [0, 1]× T ∈ Nk+1(X) , t× T ∈ Nk(X) ,

‖[0, 1]× T‖ 6 (L1 [0, 1])⊗ ‖T‖ ,

and
∂
(
[0, 1]× T

)
= 1× T − 0× T − [0, 1]× ∂T .

Moreover, if T is integral, then so is [0, 1]× T .

Proof. First, we prove that [0, 1]× T is normal. Clearly, it is a multilineare metric func-
tional. By

|〈 f dπ : [0, 1]× T〉| 6
k+1

∑
j=1

∫ 1

0

∣∣∣∣〈 ft
∂πjt

∂t
dπ̂jt : T

〉∣∣∣∣ dt
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6
k+1

∑
j=1

∏
i 6=j

Lip(πi)
∫ 1

0

∫
X

∣∣∣∣ ft
∂πjt

∂t

∣∣∣∣ d‖T‖ dt

6 (k + 1)
k+1

∏
j=1

Lip(πj)
∫ 1

0

∫
X
| f | d‖T‖ dL1

we find that [0, 1]× T has finite mass and ‖[0, 1]× T‖ 6 (L1 [0, 1])⊗ ‖T‖ . We now
establish the equality

〈 f dπ : ∂
(
[0, 1]× T

)
+ [0, 1]× ∂T〉 = 〈 f dπ : 1× T − 0× T〉 (∗)

for the special case of f , πj differentiable wrt. t , such that ∂ ft
∂t , ∂πjt

∂t are bounded Lipschitz
functions. Indeed, 〈 f dπ : t× T〉 is a Lipschitz function of t , and for a.e. t ∈ [0, 1] ,

∂

∂t
〈 f dπ : t× T〉

= lim
h→0

〈
ft+h − ft

h
dπt+h : T

〉
+

k

∑
j=1

(−1)j+1
〈

ft d
(

πj,t+h − πjt

h

)
∧ dπ1t ∧ · · · dπj−1,t ∧ dπj+1,t+h ∧ · · · dπk,t+h : T

〉

=
〈

∂ ft

∂t
dπt : T

〉
+

k

∑
j=1

(−1)j+1
〈

ft d
(

∂πjt

∂t

)
∧ dπ̂jt : T

〉
.

Thus, by the fundamental theorem of calculus,

〈 f dπ : 1× T − 0× T〉 =
∫ 1

0

[〈
∂ ft

∂t
dπt : T

〉
+

k

∑
j=1

(−1)j+1
〈

ft d
(

∂πjt

∂t

)
∧ dπ̂jt : T

〉]
dt .

On the other hand, by the chain rule,

〈 f dπ : ∂
(
[0, 1]× T

)
+ [0, 1]× ∂T〉

= 〈d f ∧ dπ : [0, 1]× T〉+
k

∑
j=1

(−1)j+1
∫ 1

0

〈
ft

∂πjt

∂t
: ∂T

〉
dt

=
∫ 1

0

[〈∂ ft

∂t
dπt : T

〉
+

k

∑
j=1

(−1)j+1
(〈

d
(

ft
∂πjt

∂t

)
∧ dπ̂jt : T

〉
−

〈
∂πjt

∂t
d ft ∧ π̂jt : T

〉)]
dt

= 〈 f dπ : 1× T − 0× T〉 .

This proves (∗) in the special case.

We now prove (∗) in general and the continuity axiom for [0, 1]× T . Fix a Lipschitz
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function $ : R → [0, 1] with support in [−1, 1] such that $(0) = 1 =
∫ 2

0 $ dL1 . Note that
for any bounded Lipschitz function f : [0, 1]× X → R ,

f ε(t, x) =
1
ε

∫ 1

0
$(ε(s− t)) f (s, x) ds for all (t, x) ∈ [0, 1]× X , ε > 0 ,

defines a function f ε differentiable w.r.t. t such that the t-derivative is bounded Lipschitz
function. Moreover, f ε → f (ε → 0+) with bounded Lipschitz constants.

Thus, if [0, 1]× ∂T is a current, then by continuity, the equation holds for arbitrary
f dπ . But then ∂([0, 1]× ∂T) is a current as the sum of currents. This implies the conti-
nuity axiom for [0, 1]× ∂T in the case f a characteristic function. By approximation (the
right hand side has finite mass because T is normal), it also holds in general. This shows
by induction that it suffices to prove the statement for k = 0 . But then ∂T = 0 , and
[0, 1]× ∂T is a current.

Thus, T is a current, and we have the equation, for any k . But the equation shows
that ∂(T × [0, 1]) has finite mass, since this is the case for ∂T . �

This theorem furnishes a surprisingly simple proof of the existence of filling currents,
due to Stefan Wenger [Wen04]. We do not state it in its most general form.

Existence of Filling Currents 5.6.6. Let X be a Banach space and suppose that we are
given S ∈ Ik(X) , ∂S = 0 , with r = diam supp S < ∞ . Then there exists T ∈ Ik+1(X)
such that we have supp T ⊂ co(supp S) , ∂T = S , and

‖T‖ 6 (k + 1)r‖S‖ , in particular, M(T) 6 (k + 1)rM(S) .

Proof. Fix x0 ∈ supp T . Let ϕ : [0, 1]× supp T → X be defined by

ϕ(t, x) = t(x− x0) + x0 for all x ∈ supp S .

Then Lip(ϕ(xy, x)) 6 r for all x ∈ supp T , and Lip(ϕ(t, xy)) 6 t 6 1 for all t ∈ [0, 1] . Let
T = ϕ•([0, 1]× S) . Then T ∈ Ik+1(X) and

∂T = ϕ•(∂([0, 1]× S)) = ϕ•(1× S)− ϕ•(0× S)

by theorem 5.6.5. Moreover,

〈 f dπ : ϕ•(t× S)〉 = 〈 f ◦ ϕt d(π ◦ ϕt) : S〉 ,

so ϕ•(1× S) = S (ϕ1 = id) and ϕ•(0× S) = 0 (ϕ0 constant). Moreover,

|〈 f dπ : T〉| 6
k+1

∑
j=1

∫ 1

0

〈
f ◦ ϕt

∂(πj ◦ ϕt)
∂t

dπ̂ ◦ ϕt j : T
〉

dt
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6
k+1

∑
j=1

∏
i 6=j

Lip(πi ◦ ϕt)
∫ 1

0

∫
X

∣∣∣∣ f ◦ ϕt
∂(πj ◦ ϕt)

∂t

∣∣∣∣ d‖T‖ dt

6 (k + 1)r
k+1

∏
j=1

Lip(πj) ·
∫ 1

0

∫
X
| f ◦ ϕ| d‖T‖ dL1 ,

so the assertion follows by definition of mass. �

Remark 5.6.7.

(i). In the proof, ϕ can be replaced by any Lipschitz contraction. Thus, the results
to all metric spaces with a uniform bound on the Lipschitz constants of contractions
of bounded subsets, cf. [Wen04, prop. 5.4]. (Such a metric space is, in particular, con-
tractible.)

(ii). Note that the construction in the proof amounts to ‘suspension’ within the space
of integral currents.

(iii). A more precise statement, the so-called isoperimetric inequality’, would remove
the dependence on r at the expense of including the power k+1

k on the right hand mass.
Such a theorem can be deduced from the above statement, and forms the main portion
of Wenger’s thesis [Wen04]. However, the above statement suffices for the solution of
Plateau’s problem in the case of Hilbert spaces.

Proof of theorem 5.6.2. Let r = diam supp S , which is finite. By theorem 5.6.6, the set

Y =
{

T ∈ Ik+1(X)
∣∣ ∂T = S , M(T) 6 r(k + 1)M(S)

}
is non-empty. In particular, M := inf M(Y) = inf

{
M(T)

∣∣ T ∈ M(X) , ∂T = S
}

. Let
Tj ∈ Y , limj M(Tj) = M . Replacing Tj by πK•(Tj) where K = co(supp S) is compact
and πK : X → K is the metric projection, which is 1-Lipschitz, and characterised by

‖πK(x)− x‖ = dist(K, x) for all x ∈ X ,

we may assume supp Tj ⊂ K . Then supj‖Tj‖ 6 M + M(S) < ∞ . By the compactness
theorem 5.4.2, extracting a subsequence, we may assume Tj → T ∈ Nk+1(X) point-
wise, and supp T ⊂ K is compact. In particular, ∂T = limj ∂Tj = S . By the closure
theorem 5.5.10, T ∈ Ik+1(X) . This proves the theorem. �

Remark 5.6.8. The solution of Plateau’s problem in Hilbert spaces is from [AK00a], the
modified cone construction and the existence of filling currents are from Wenger’s thesis
[Wen04].
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5.7 Intrinsic Representation of Currents

5.7.1. Having reformulated and solved Plateau’s problem in the framework of currents,
it is important to ensure that the result is indeed what we intended it to be, namely, we
need to see how integral currents correspond to countably k-rectifiable sets. We shall not
address the question of regularity of minimal filling surfaces, which is rather delicate,
albeit natural, given the classical formulation of Plateau’s problem.

5.7.2. We assume now that X be embedded in some Y = E∗ where E is a separable
Banach space. Let τ = τ1 ∧ · · · ∧ τk ∈

∧k Y be a simple k-vector. Let Jτ be defined by
Jτ = Jk(Lτ) where Lτ : Rk → Y is given by Lτ(x) = ∑k

j=1 xjτj . Then Jτ is well-defined,
since for σi = λiτi , defining Mλ(x) = (λixi) , we have

Jτ1∧···∧τk =
k

∏
j=1
|λj| · Jσ1∧···∧σk .

The simple k-vector τ is said to a unit simple k-vector if Jτ = 1 . Clearly, any simple
k-vector is equivalent to a normalised one.

If S ⊂ X is countably k-rectifiable, then an orientation is a function

τ = τ1 ∧ · · · ∧ τk : S →
k∧

Y

such that τj is a Borel function for each j , τ(x) is a unit simple k-vector and Tank(S, x) is
the span of τj(x) , j = 1, . . . , k , for Hk a.e. x ∈ S .

Given a Lipschitz map π : S → Rp , we define for Hk a.e. x ∈ S a p-covector
∧p dSπ(x) by

∧p dSπ(x) = dSπ1(x) ∧ · · · ∧ dSπp(x) ∈
∧p

Tank(S, x)∗ .

If p = k and f : Rk → X is a Lipschitz map, then for Hk a.e. y = f (x) ∈ S , the defining
(chain) rule for the tangential differential gives

Jk(dSπ(x)) =
|det(π ◦ f )′(x)|

Jk( f ′σ(x))
=

∣∣〈J−1
τx

τx : ∧pdSπ(y)
〉∣∣

where τx = f ′σ(x)e1 ∧ · · · ∧ f ′σ(x)ek and the duality between k-vectors and k-covectors is
given as usual by

〈x1 ∧ · · · ∧ xk : ξ1 ∧ · · · ∧ ξk〉 = det(〈xi : ξ j〉) for all xi ∈ V , ξ j ∈ V∗

where V is any vector space. Since f was arbitrary, we conclude that for any orientation
σ of S ,

Jk(dSπ(x)) =
∣∣〈σ(x) : ∧k dSπ(x)

〉∣∣ for Hk a.e. x ∈ S .
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Proposition 5.7.3. Let S ⊂ Y = E∗ be countably k-rectifiable where E is a separable
Banach space, ϑ : S →]0, ∞[ a Hk summable Borel function, and τ an orientation of S .
Then

〈 f dπ : [[S, ϑ, τ]]〉 =
∫

S
f (x)ϑ(x)〈τ(x) : ∧k dSπ(x)〉 dHk(x) for all f dπ ∈ Dk(X)

determines [[S, ϑ, τ]] ∈ Rk(Y) . Moreover, this current is in Ik(Y) if ϑ maps to N \ 0 .
Conversely, any T ∈ Rk(Y) (resp. T ∈ Ik(Y) is given in this way.

Proof. First, we prove that any T ∈ Rk(Y) has this form. To that end, we consider
T = ϕ•[[g]] where g ∈ L1(Rk, R) (resp. L1(Rk, Z)) is supported in some compact K , and
ϕ ∈ Lip(Rk, Y) is bi-Lipschitz on K. Let L = ϕ(K) and τ any orientation of L . Let
ηx = Jk( f ′σ(x))−1 · ϕ′σ(x)e1 ∧ · · · ∧ ϕ′σ(x)ek . Then ηx = σ(x)τϕ(x) for some σ(x) = ±1 and

det(π ◦ ϕ)′(x) = σ(x) · 〈τϕ(x) : ∧k dSπ(ϕ(x))〉 · Jk( f ′σ(x)) for Hk a.e. x ∈ K .

Then

〈 f dπ : T〉 =
∫

K
g · ( f ◦ ϕ) · det(π ◦ ϕ)′ dLk

=
∫

L
f (y)g(ϕ−1(y))σ(ϕ−1(y))〈τy : ∧k dSπ(y)〉 dHk(y)

by the change of variables formula corollary 4.1.6. Setting ϑ(y) = g(x)σ(x) for y = ϕ(x)
(possibly changing the sign of τ) and S = L ∩ {ϑ > 0} , the assertion follows in the
special case. The general case follows by approximation with normal currents, i.e. theo-
rem 5.3.5.

That any triple as above induces a rectifiable current (resp. an integer-rectifiable cur-
rent) in the case E = Rk follows just as in proposition 5.2.3. The case S = ϕ•(K) where
K is some compact in Rk and ϕ is bi-Lipschitz then follows by the area formula. The
general case follows, as usual, from lemma 4.2.3. �

5.7.4. To give a definitive statement of the above proposition in a general metric frame-
work, we introduce the following concepts. A triple (S, ϑ, τ) where S is a countably
k-rectifiable set in Y = E∗ , ϑ : S →]0, ∞[ an Hk summable Borel function, and τ an
orientation of S , is called an oriented k-rectifiable set. Two such oriented k-rectifiable sets
(Sj, ϑj, τj) , j = 1, 2 , are said to be equivalent if there exist subsets S′j ⊂ Sj ,Hk(Sj \ S′j) = 0 ,
and an isometric bijection f : S′1 → S2 satisfying ϑ1 = ϑ2 ◦ f and

∧kdS1 f (x)τ1(x) = τ2(x) for all x ∈ S1 ,

∧kL :
∧k V → ∧k W being the linear map induced by any linear L : V → W .

Theorem 5.7.5. Let (Sj, ϑj, τj) be oriented k-rectifiable sets in dual Banach spaces Yj = E∗j .
Then they are equivalent if and only if there is an isometry i : S′1 → S′2 , Hk(Sj \ S′j) = 0 ,
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such that ϑ1 = ϑ2 ◦ i and
i•[[S1, ϑ1, τ1]] = [[S2, ϑ2, τ2]] .

In particular, they are equivalent if they represent the pushforward ij•T of the same
rectifiable current T ∈ Rk(X) , X some metric space.

5.7.6. We shall not prove the theorem. The proof is based on standard arguments.
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