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1. Basic Measure Theory

7] Basic Measure Theory

1.1 Measures and Measurability

Definition 1.1.1. Let X be a set. A map y : P(X) — [0, c0] is a measure on X if

(@) =0 and pu(A) <) u(Ax) whenever AC [JAx.
k=0 k=0

In particular, y is increasing and o-subadditive.

NB. Usually, measures as defined above are referred to as outer measures whereas usual
measures are commonly supposed to be defined on some c-algebra of sets possibly
smaller than P(X) . Any such common measure can be extended to an outer measure.

Definition 1.1.2. If Y C X and y is a measure on X, then its restriction y L Y is defined
by (uL Y)(A) =u(ANY)forall A C X.Itis ameasureon X.
A subset A C X is said to be u measurableif y =y A+ulL (X\A),ie.

#(B) =u(BNA)+u(B\A) forall BC X.

It is immediate that A is 4 measurable whenever j(A) = 0, and that A is 4 measurable if
and only X \ A is. Moreover, since the inequality < always true, it suffices to prove > to
prove that A is y measurable. In particular, it suffices to consider sets B with y(B) < oo.
Denote by 9(j) the set of 1 measurable sets.

A set such that j1(A) = 0 shall be called p negligible or a u zero set. Correspondingly,
X \ A shall be called a p cozero set. Often, we shall say that some predicate P is true p
almost everywhere (4 a.e.) or that P(x) is valid for p almost every x € X ; by which token
we shall mean that the set {P} = {x € X|P(x)} is u cozero.

Proposition 1.1.3. Let Ay C X be u measurable.
(i). Uro Ak and N~y Ak are p measurable.
(ii). If Ay are disjoint, then p(Upg Ax) = Lo #(Ax) -
(iii). If Ax C Agyr, then limy p(Ay) = p(Upo Ax) -
(iv). If Ax D Agsq and p(Ag) < oo, then limy p(Ax) = (Mo Axk) -

Proof. Clearly, the statement in (i) on intersections follows from that on unions by taking
complements in X, and similarly (iv) follows from (iii) by taking complements in Ay .
First, let us prove (i) for finite unions. It suffices to consider the A9 U Ay where A;,
j = 0,1, are y measurable. For B C X,

#(B) = u(BN Ag) + u(B\ Ao)
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= u(BN Ag) + pu((B\ Ao) N A1) + p((B\ Ao) \ A1)
> u(BN(AgUAL)) +u(B\ (AgUA)),

so Ag U Aj is y measurable.
Now to (ii). Let (A;) be disjoint and define By = U;'{:o A;. Then By is y measurable,

Bii1 M Aky1 = Agpr and Byyq \ Agpq = By

Thus,
- k+1
(U 47) = 1(Besn) = n(Awa) + (B = Y u(4).
=0
Therefore,
Z(:)y(A]) \F(U]-:OA;),
j=

and the converse inequality is trivial.

Now, (iii) follows immediately, since

3

limy 1(Ay) = (Ao) +kf<y<Ak+l> - H(A0) = F(A) + 1 p(A\ A1)
=0 =0

= 140U (A \ 40)) = (U 4e) -
Now to the case of infinite unions in (i). Let B C X, y(B) < oo. Any y measurable set is
p L B measurable. In particular, By, defined as above, are 1 L B measurable. Hence, by
(iii) and (iv),
u(B) = (uL B)(X) = lime((u L B)(By) + (nL B)(X\ By))
= (1 B) (U o Be) + (1 BY(N (X \ BY))
= u(BOUp o Be) +1(Up o (B\BY)

and thus follows the assertion. O

Definition 1.1.4. A set A C P(X) is a o-algebraif @ € A, X\ A € Awhenever A € A,
and Uy Ax € A whenever 4, € A.

Thus, by proposition 1.1.3, M () is a o-algebra. By the same token, the of all i zero
(resp. p cozero) sets is closed under countable unions and intersections, although it is
usually not a o-algebra.

The intersection of o-algebras is a o-algebra. Thus, for any A C P(X), there exists a
smallest o-algebra containing A .

If X is a topological space, the Borel o-algebra B(X) is the smallest o-algebra contain-
ing the topology of X . Sets A € B(X) are called Borel (after E. Borel).
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Definition 1.1.5. Let # be a measure on X . y is called

finite if u(X) < oo,

regular if for all A C X, there exists a y measurable B D A so that y(A) = u(B).

Now let X be a topological space. i is said to be

Borel if all Borel sets are y measurable

Borel regular if j is Borel and forall A C X, thereisa Borel B D A so that u(A) = u(B),
Radon if u is Borel regular and finite on compacts.

We briefly study the special properties of measures satisfying these conditions.

Proposition 1.1.6. Let y be a regular measure on the set X. If Ay C Ay C X are (not
necessarily measurable) subsets, then limy y(Ax) = p(Uro Axk) -

Proof. Let By D Ay be p measurable, such that p(Ax) = p(Bx). Let C¢ = N2y Bj. Then
1(Ax) < u(Cx) < u(Byg), and thus u(Cy) = p(Ax) . We have Ay C Cx C Cy4q1 and Cy are
measurable. Thus, by proposition 1.1.3 (iii),

limy p(Ax) = M(U,io Ck) > H(U;OZO Ak) > supy p(Ax) = limy p(Agx) ,

proving the claim. O

Proposition 1.1.7. Let X be a topological space and y a Borel regular measure on X.
If A C X is p measurable and p(A) < oo, then u L A is finite and Borel regular, in
particular, a Radon measure.

Proof. | Ais a Borel measure, and (u L. A)(X) = p(A) < oo. Since y is Borel regular,
there exists a Borel B D A so that y(B) = u(A). Since A is y-measurable, B\ A is u
negligible. Thus, for all C C X,

(1L B)(C) = w(CNBNA)+u((CNB)\ A) = u(CNA) = (uL A)(C),

and we may assume that A be Borel.
To see that u L A is Borel regular, let C C X. There exists a Borel D D CN A such
that (D) = (u . A)(C).Let E=DU(X\ A). Then E is Borel, and E D C. Moreover,

(nl A)C) < (pL A)E) = (p L A)D) < u(D),

and thus, (u L A)(C) = (uL A)(D). O
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Lemma 1.1.8. Let X be topological, and every open subset be an F, (e.g., X is metris-
able).! Let y be a Borel measure on X, and B C X Borel.

(i). If u(B) < oo, then for all ¢ > 0, there exists a closed C C Bso that u(B\ C) <e.

(ii). If B is contained in the union of countably many u finite open sets, then for all
e > 0, there exists an open U D B so that (U \ B) < ¢.

Proof of (i). Note thatv = p L B is a finite Borel measure. Let
F={AeM({u)|Ve>03closedC C A : v(A\C) <e}

Of course, all closed subsets of X are contained in F . Let (Ax) C F and fixe > 0. There
exist closed Cy C Ay such that p(Ag \ Cx) < 55 - Then

(M A\ N &) < v(Up 4\ G < kéu(Ak \Cp) <e.

Since N2 Cy is closed, Ny Ax € F . Similarly,

timiv (U 4\ U, &) = (U A\ U, &) <v(UD, 4\ ) <e,

so v(UpZo Ak \ U?:o Cj) < 2¢ for some k, and we conclude (i~ Ax € F.

Since every open subset of X is an F,, F contains all open subsets of X . Moreover,
G={AeF|X\AcF}

is a o-algebra containing the topology of X. Hence, B € B(X) C G C F, and thence
our assertion.

Proof of (ii). Let B C Uy Uy where Uy C Uy are open, u(Uy) < oo. Then Uy \ B
are y finite Borel sets, so we may apply (i) to find closed subsets Cy, C Uy \ By such that
u(Up\ (BUC)) < 55 - Clearly, B C U := UpZ(Ux \ Ci) , which is open. Moreover,

(o]

p(UN\B) <} pu(Ue\ (BUGY)) <,
k=0

which establishes the proposition. U

Theorem 1.1.9. Let X be topological, and every open subset be an F, (e.g., X is metris-
able). Let u be a Borel regular measure on X, and assume that X = (i, Ux where

Ui C X are open and y finite.
(i). Forall A C X, u(A) = inf{u(U) | A C U, U open} (outer regularity’).

1f (X, d) is metric, U C X open, then U = U721 Cj where Cj = {dist(u, X\ U) > %}
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(ii). Forall A € M(u), u(A) =sup{u(C) | C C A, C closed} (‘inner regularity’).

(iii). If X is Hausdorff and o-compact, we may take compacts in place of closed sub-

sets in (ii).

Proof of (i). If y(A) = oo, the statement is clear. Let p(A) < oo. There exists a Borel
B D A sothat u(A) = u(B). Fixe > 0. By lemma 1.1.8 (ii), there exists an open U D B
such that u(U \ B) < ¢, and

u(U) =pu(B)+u(U\B) < u(B) +e=u(A) +e,

so we have the claim.

Proof of (ii). Let A C X be y measurable and assume first that j/(A) < co. Thenpu L A
is a Radon measure by proposition 1.1.7. Because (u L A)(X\ A) = 0, by (i), we can
obtain for givene > Oanopen U D (X \ A)sothat (u L A)(U) <e.ThesetC =X \U
is closed and contained in A . Furthermore,

#(A) =u(C) +u(A\NC) =p(C) + (p L A)(U) < u(C) +e,

so u(A) =sup{u(C) |CC A, Cclosed}.

Now, let i(A) = co. Let Kj = Ujiq \ U;{:O Uy where X = (g2, Uy, Ui being u finite
open sets. Then K; are disjoint, Borel, y finite, and X = U2 K;. Thus

];)V(A nKj) = V(U}ZO(AOK]')) = H(A) = oo,

Since (A NK;) < oo, there exist closed C; C AN K; such that u(ANK;) < u(Cj) + % .
Hence Y7 #(C;) = o0, and

timi (U7, 6) = #(U7, G) = ]i)y(cj) — 0.

This proves the equation also in the case of infinite measure.

Proof of (iii). Any compact is closed, and any closed set is the countable ascending

union of compacts. U

Theorem (Carathéodory’s criterion) 1.1.10. Let (X, d) be metric and y a measure on X.
If u(AUB) = u(A) + u(B) whenever A, B C X satisfy dist(A,B) > 0, then yu is a Borel
measure.

Proof. 1t is sufficient to show that any closed C C X is y measurable. Let A C X,
#(A) < co. We claim that u(ANC) +u(A\C) < u(A).
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Let C, = {x € X | dist(x,C) < 13 Then

dist(A\ C,, ANC) > dist(X\ C,,C) > L >0.

n

Hence,
HANCy) + u(ANC) = u((A\Cy) U(ANC)) < u(A).

Thus, our claim follows as soon as lim,, (A \ C,) = u(A\C).Let Dy = (ANCy) \ Cry1-
Then A\ C = A\ C, U, D, and thus
H(A\Ci) < p(ANC) S u(ANCu) + ) u(Dy),

k=n

so it suffices to prove Y ;- ; #(Dy) < co. Note that dist(Dy, Dy) > Oassoonas |k — ¢| > 2.
Therefore,

Z (Dx) = sup,,-, [Z u(Dy) + ) V(Dzk—l)]
k=1

= sup,,q [1(Ur, Do) + #(Up, Dok ) | <20(4) < o0,

so the claim and hence the theorem follow. O

1.2 Support of a Measure

Definition 1.2.1. Let X be a set, 1 a measure on X. If C C X, then y is said to be
concentrated on C if X \ C is p-negligible. If X is topological and C is closed, then y is
said to be supported on C if it is concentrated on C.

Moreover, let supp p, the support of u, be the set of all x € X such that u(U) > 0 for
all neighbourhoods U of x . Then supp u is closed.

Proposition 1.2.2. If X is a c-compact Hausdorff space, and u is a Radon measure, then
u is supported on supp y. (Le., supp p is the complement of the largest open negligible
subset of X.)

Proof. Let U = X \ supp j. Let C C U be compact. Then C is contained in a finite union
of open p negligible sets, so 4(C) = 0. By theorem 1.1.9 (iii), p(U) =0. —— O

Remark 1.2.3. Although it is not too easy to construct counter-examples, not every Borel
regular measure is supported on its support. Compare [Fed69, ex. 2.5.15] for an example
with X = [~1,1)/, ] uncountable.

Definition 1.2.4. A cardinal « is called an Ulam number if for any measure y on a set X,

and any disjoint family F, #F < a, (U F) < o0, such that |JG is u measurable for all
G C F,wehave

(vaeF :pa)=0) = u(UF)=o0.
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Clearly, any finite cardinal, and also the cardinality of a countable infinity, Xy = #IN,
is an Ulam number. The statement that any cardinality of a set is an Ulam number is
consistent with the ZFC axioms of set theory, cf. [Fed69, 2.1.6].

Theorem 1.2.5. Let X be metric, u a finite Borel measure. Then supp y is separable. If
X contains a dense subset Y such that #Y is an Ulam number, then y is supported on

Suppi.

Proof. For A, C suppp be maximal with property that for any distinct x,y € A,,
d(x,y) > 2. Then A, = {B(x, 1) | x € Ay} is disjoint, and

Y oneu, #A) =u(JAn) < u(X) < oo,

so Ay, is countable. For all x € X, there exists y € A, such that d(x,y) < 2. Therefore,
Un—q Ay is dense.

W.lo.g., assume that #X is infinite. If # = #Y is an Ulam number for some dense
Y C X, then the set of balls with rational radii centred on y € Y has cardinality «,
and forms a base of the topology of X . Thus, there exists a family ¢/ of u neglible open
subsets of X, such that

X\suppu=JU and #U<u.
Choose a well-ordering < of i/ .2 For U € Y and n € N'\ 0, let
Co(U)={xeX|V=<U= x¢gV, dist(x, X\U) >1}.

Clearly, C,(U) is closed. Moreover,

n=1
If x,y € UC, are such that x € C,(U) and y € C,(V) where U # V, we may assume
U < V. Hence, d(x,y) > % . This implies that C, is disjoint; furthermore, if 7 C C,,
then
xeJG\UF = B(xz)clUG\UZF,

so JFisclosedin JC,. If x € YU\ UC,, then x € U for some U € U, and we have
6 = 1 —dist(x, X\ U) > 0. Thus, B(x,5) C X\ C,(U) and B(x, 1) C X\ C,(V) for all
V # U. Therefore |JC, is locally closed, and |J F is 4 measurable. Since #F < a, we
find 11 (UC,) = 0. Hence, u(UU) = 0. a

ZRecall that a well-ordering on a set P is an order such that each non-empty subset of P has a least
element. Any well-ordering is total. The statement that any set can be well-ordered is equivalent to the
axiom of choice.
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Corollary 1.2.6. Let X be complete metric, u a finite Borel measure. If #X is an Ulam
number, then y is concentrated on a o-compact.

Proof. Let (x,) C supp j be a dense sequence. Define Ly, = Uf:o B(xj,¢) . Since p is
concentrated on supp i, for all k > 1, and any ¢ > 0, there exists {;. € IN such that
(X \ Lig,,) < 5 Let Ke = M2 Ly, - Then pu(X \ Ke) <e.

We claim that K, is compact. Let (y,) C K. be a sequence, and set Ag = IN. Induc-
tively, define infinite sets Ax,1 C Ax C Ao as follows. Since (yu)nea, C Lis1.,,, , there
exists some j such that d(x;, y,) < k%l for infinitely many n € Ay . Let Ay be the set of
all these n € Ay . Now define «(0) = 0 and

a(k+1) =min{n € Ay | n>a(k)}.

Then (Y4 (1)) is a subsequence of (y,), and d(Yu k), Ya(r)) < 5= forall ¢ > k > 1. Hence,
(Ya(k)) is a Cauchy sequence, and therefore converges to some y € K..
Now, A = U1 K1k is a c-compact, such that y(X \ K) = 0. O

1.3 Measurable Functions

Definition 1.3.1. Let X be a set, Y a topological space, and y a measure on X. A map
f: X — Y is said to be u measurable if f~1(U) is u measurable for each open U C Y.
Equivalently, f~1(B) is 4 measurable for all Borel B C Y.

Set R = [—0c0, 0], and endow this set with the (compact, metrisable) topology gen-
erated by the set of all intervals [—oo,a[ and |a, co] for —co < a < oo. Then a function
f : X — Ris y measurable if and only if {f < a} is y measurable for all 2 < co. If in
particular, X is topological and y is a Borel measure, then all 1.s.c. and u.s.c. functions
are y measurable. The characteristic function ¢ - 14 where ¢ € R\ 0 is  measurable if
and only if A is.

A'set A C X is said to be o-finite for y if it is measurable and the countable union of
A, u(Ag) < oo. Similarly, f : X — R is said to be o-finite for u if it is 4 measurable and
{f # 0} is o-finite.

Proposition 1.3.2.

(i). Let f,¢ : X — R be y measurable. Then so are f +¢, fg, f=, |f|, min(f,g),
max(f,g).Ifg #0on X, thensois f/g.

(ii). Let fy : X — R be u measurable. Then so are inf f, sup, fi, limsup, fi,
liminfy fy .

Proof of (i). Note

{f+g<at= U {f<tinfg<c},

b,ceQ,b+c<a
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so f + g is u measurable. Because {f?> < a} = @ifa<0and {f2<a} ={-b< f < b}
where b? = a otherwise, f? is u measurable. Since 2fg = (f + g)*> — (f> + %), fgis u
measurable, too.

Let g # 0 everywhere. Then

{1/a < g < 0} a<0,

{1/g<a}{{g<0}u{1/a<g} a=0,

where 1/0 = co. Thus 1/g is 4 measurable, and the same follows for f/g.

Now, f* =1¢50- fand f~ = (—f)" are y measurable. Since

fl=f"+f", max(f,g) = (f —g)" +g, and min(f,g) = — max(—f, —g),
the item (i) is proven.

Proof of (ii). First, {infy fy < a} = UiZo{fx < a}. Then, sup, fy = —inf(—fx), and
moreover, liminfy fy = sup, inf;>; f;, and limsup, = — liminfy(—f;). ———— O

The following lemma will be useful later. It exhibits a positive function as the upper
envelope of sums of characteristic functions which are y measurable if f is. This is

called a pyramidal approximation.

Lemma 1.3.3. Let f : X — [0, 00]. Then f = sup, f; where

1 k2K
fk:?'zl{f>]'/2k} forall k € IN.
j=1

Proof. By definition, fi < f. On the other hand, for k > f(x),

2 (f(x) - filx) =2 flx) - |2 flx) | + 1< 2,

500 < f(x) — fi(x) < 51 O

1.4 Lusin’s and Egorov’s Theorems

Theorem (Lusin) 1.4.1. Let X, Y be metric with X o-compact and Y separable, and let u
be a Borel regular measure on X. Let A C X be y measurable and y(A) < co. For any
¢ > 0, there exists a compact K C A such that (A \ K) < eand f | K is continuous.

Proof. Forany k > 1, let (Bi/)sen C B(Y) be a Borel partition of Y so that diam By, < % .

Let Ayy = AN f~1(By) . Then (Ag)ren C 9M(u) is a 4 measurable partition of A .
Consider v = u L A, a Radon measure by proposition 1.1.7. Thus X is the countable

union of v-finite open sets. Theorem 1.1.9 gives compact subsets Ky, C Ay, satisfying




1.4. Lusin’s and Egorov’s Theorems

V(Ake \ Kre) < 555 - Thus

lim,, (A \ /,L:Jo Kke) =v <A \ QO Kké) <v <G Are \ Kké) < i V(Ake \ Kie) <

/=0 (=0

Hence, for some 1, € N and Cy = U, Kir, we have u(A\ C) < &
Define g : Cx — Y by 8k =byyon Ky, £ = 0 , N, where by, € By are chosen
arbitrarily. Since diam By, < E ,we find d(f, gx) < E on Ck. Let K = N2 Cx. Then

u(A\K) < i (A\ Cp) <

Moreover, limy gx = f uniformly on K and the g are locally constant, so f | K is contin-

uous. O

Corollary 1.4.2. Let X be metric and o-compact, u a Borel regular measure on X, E lo-
cally convex and metrisable, and f : X — E be y measurable. If A € M (p), u(A) < oo,
and ¢ > 0, then there is a continuous function g : X — Esuchthat (u L A){f # g} <e¢

Proof. By theorem 1.4.1, there exists a compact K C A such that (A \ K) < ¢ and
f ‘ K continuous. By the Dugundji-Tietze theorem [Dugb1, th. 4.1], there is a continuous
extension § : X — E of f | K. Since {f # g} C X\ K, the assertion follows. —— [

Remark 1.4.3. An equivalent formulation of the conditions on E in the above corollary
is the following: E is locally convex, Hausdorff and first countable (i.e. 0 has a countable
neighbourhood basis). The reader may be more familiar with the classical Tietze exten-
sion theorem, where E = IR. Of course, the classical Tietze theorem gives the above
corollary for E = IR" with its Hausdorff vector space topology.

Theorem (Egorov) 1.4.4. Let X be a set, Y be metric, y ameasureon X ,and f, fy : X — Y
be y measurable. If A € M (), u(A) < oo, and f = limy f pointwise y a.e. on A, then
for all ¢ > 0 there exists ¢ measurable B C A such that y(A\ B) < € and f = limy f;

uniformly on B.

Proof. Let Ay = U]?"’:k{d(fk,f) > %} . Then Ayy1¢ C Age, and A N2y Ak is p negligi-
ble forall £ > 1. Thus, lim u(A N Ay) =0.

Fix ¢ > 0. For all £, there exists n;, > 1 such that u(AN A, ;) < 5. Then the set
N = U2 (AN A,,,) is y measurable and u(N) < e. If x € B = A\ N, then for all

k> ng, wehaved(fi(x), f(x)) < 7,s0 f = lim fy uniformlyonB. ————— O

Corollary 1.4.5. Let X be a set, Y be metric, 4 a measure on X, and f, fy : X — Y be u
measurable. Let A € 9(u) be o-finite and f = lim; f; pointwise y a.e. on A. Then there
exist M(u) > B C A such that u(A\ Uiy Br) = 0 and f = lim; f; uniformly on By.

Proof. Let A = 2y Ax where Ay € M(u), u(Ax) < oo. We may assume Ay C Ajiq .
There exist y measurable By C A such that (A \ Bx) < zk 7 and f = limy f; uniformly

13
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on By. We may assume By C Byy1. Thusforall / € N,

[0 (o] o0 (o] 1
V(A VUi Bk) - ‘u(Uk:K AU, Bk) S ‘M(Usz Aic\ Bk) S
We conclude that p (A \ Upo Bx) = 0. O
1.5 Integrals and Limit Theorems

Definition 1.5.1. Let X be a set. A function f : X — R is called simple if its image is
countable. (This means f = )} ;°,ar14, where the Ay are mutually disjoint.) Note that
summation on IR is well-defined, associative and commutative for all pairs x, y € R such
that {x,y} # {£co}. Thus for a measure ; on X we may define

/fdy = Y y-u(g'(y)) forall simple, u measurable f : X — [0, 0]
0

Sy<oo

and
[fan=[frau=[fu=" ¥ vu(F')
—co<y<oo
for all simple, y measurable f : X — R for which [ fTdu < coor [ f~du < 003 In the
latter case, f is called a y integrable simple function. (Not to be confused with the notion
of p-summable function, to be defined below.)

Definition 1.5.2. Let f : X — RR be arbitrary. Define the upper and lower integral of f by

/ fdu = inffég y ae., g p-integrable simple/gd,u and Lfd,u = _/ (—=f)du.

If f is u measurable and [* fdu = [, fdu, then f is called y integrable. In this case, the
integral of f is, per definition,

/fdﬂ:/*fdﬂzlfdﬂ-

If A C X is yu measurable, define [, fdu = [fd(u L A) whenever fispu L A-
integrable.

If f is p integrable and [|f|du < oo, we say that f is p summable (see below). If
X is topological, then f is said to be locally y summable if f y measurable and y L U
summable for U in a neighbourhood basis of X. E.g., for X metric, on all balls, or for
X locally compact, for all compacts. A locally y summable function is always p L. K-
summable for each compact K C X.

The terminology integrable/summable is Federer’s. An alternative nomenclature
which often appears in the literature is quasi-integrable/integrable.

3For A C R, Y cqa:= LT — X7 if either of ZF is finite. Here, 2+ = SUPFC A #F<co LacF at.
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Remark 1.5.3. Note that any y measurable f > 0 (4 a.e.) is y integrable.
Indeed, if u{f = o} > 0, then

/*fd#>/*fdy>/oo-1{f:oo}dy:oo-y{f:oo}:oo,

Otherwise, let 1 < t < oo, and define

[ee]

g=) t" L papmery -
k=0
Theng < f < t-g,so0 ["fdu < t-[gdu < t- [ fdu. Since t was arbitrary, the
assertion follows.

Definition 1.5.4. Let X be topological. A set function v : P(X) — R is a signed measure if
there is a Radon measure y and a locally # summable function f : X — R so that

v(K) = / fdyu for all compacts K C X .
K

In this case, we writev = pu L f.Notethaty L A =pu L 1, if Xis oc-compactand 14 is
locally p-summable.

Theorem (Fatou’s lemma) 1.5.5. Let X be a set,  a measure on X, and f; : X — [0, o]
be y-measurable. Then

/liminfkfk dyu < liminfy /fk du .

Proof. Let ¢ < liminfy fi, ¢ = Y32 axla, with Ay € M(u), be a p-integrable simple
function. We may assume Ay to be disjoint, and thus ay > Oforallk € IN. Let0 <t < 1.
Then

Ap = Uf:() Byy where By = AN ﬂ]zé{f] > tuk} .

Indeed, if x € Ay, then a; = g(x) < sup, inf;>, fj(x), so for all ¢ > 0 there exists £ € IN
such that ay — ¢ < sup;, fj(x) . If we choose 0 < & < (1 —t) - ar, then fj(x) > tay for all
j = L. Since Ay D By y11 D By, we have

[fanz Y [ fanz ¥ [ fduz Y taBe) .
k=07 Ak k=0 Bre k=0

Therefore,

lim inf, /fg du >sup, Y tagp(Be) =t Y agp(Ap) =t - /SdV :
k=0 k=0

Since t and g were arbitrary, the assertion follows. g
Corollary 1.5.6. Let 0 < fi < fi1 pt a.e. Then [ sup, frdu = sup, [ frdu.
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Proof. Clearly, sup, [ frdu < [sup, fydp. The converse follows from Fatou’s lemma,

because lim inf; = sup, for increasing sequences. U

Theorem (Lebesgue’s dominated convergence) 1.5.7. Let f, fy : X — R be y measur-
able. Suppose |fx| < g where g is 4 summable (i.e. 4 measurable and [ gdu < o), and
f = limy fi p a.e. Then f is y summable and

limk/|f—fk|dy:0.
Proof. Clearly, |f — fi| = lim/|f; — fi| < 2g. By theorem 1.5.5,
[2gdu = [timinty (2~ |f - fil) dn
< 1iminfk/(2g— |f = fel) du = /ngu —limsupk/If—fkl dy,

SO

oghmkinf/\f—fkydygnmsup/yf—fk\dygo
k

Since |f| < g, f is 4 summable. O

Theorem (Pratt) 1.5.8. Let ¢, ¢x : X — [0, 0] be  summable, f, f; : X — R be y measur-
able,

|fel < gk, f=1limyg fy and g = limy g, p ae.
If limy [ gxdyu = [ gdp, then f is y summable, and

limk/!f—fk\dﬂ =0.
Proof. The proof is similar as for Lebesgue’s theorem: Indeed,

/ngy — /nmmfk(zgk —|f = fl) du
< lim infy / (28— If — fil) 4 / 28 dy — lim sup; / |f = fil dp

by theorem 1.5.5, and again the claim follows. O

Theorem (Riesz-Fischer) 1.5.9. Let f, f : X — R be p summable, limy [|f — fi|du = 0.
Then there exists a subsequence « such that f = limy f, () p a.e.

Proof. Let « be a subsequence such that [|f — f,ldu < Zklﬁ Let ¢ > 0. Then
limsup, |f(x) — fu)| > € implies that sup,[f(x) — fy)(x)| > € for all k, so for all
k, there exists £ > k such that |f(x) — fy)(x)| > €. Hence, forallk € IN,

u[hmsupjrf—fa(jws]\z 1f ~ fupl > €] < 5 Z/!f Falde < 55—

=
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Thus, p{limsup, |f — fy@)| > 0} = lime— o4 p{limsup,|f — fu@)l > e} =0. —— O

1.6 Product Measures

1.6.1. Let u and v be measures on the sets X and Y, respectively. Define a set function
a®@pB:P(XxY)— [0,00] by

(1 ®)(C) = inf{y(A]-)v(B]-) ‘ cc U7, x B, A€ m(n), B e Qﬁ(v)} .
Here, weletco-0 = 0-co = 0. It is easy to see that y ® v is a measure on X x Y, and
(MVv)(AxB)<u(A)-v(B) forall ACX,BCY.

ForC C XxYand (x,y) € XxY,letC, = pr,((x xY)NC)and C, = pr; ((X xy)NC).
Theorem (Fubini) 1.6.2.

(i). p ®visaregular measureon X x Y.

(ii). The set A x B is y ® v measurable whenever A and B are y and v measurable,
respectively, and in this case, (4 @ v)(A x B) = u(A) - u(B).

(iii). If C C X x Y is o-finite for y ® v, then C, is v measurable for p a.e. x, Cy is p
measurable for v a.e. y, x — v(Cy) is p integrable, y — u(C,) is v integrable, and

(nov)(C) = [ w(C))dvly) = [v(Cdn().

(iv). If f: X x Y — R is y ® v-measurable and o-finite for y ® v, then [ f(,y) dv(y)
is p integrable, [ f(x, ) du(x) is v integrable, and

/fdy@v //fxydy x)dv(y //fxydv )du(x) .

Proof. Let F C P(X x Y) consist of those C for which x — 1¢(x,y) is p integrable for
ally € Y,and y — [ 1c(x,y)du(x) is v integrable. For C € F, write

o(C) = [[1exy)dn(x)dv(y) € R.

From corollary 1.5.6, we find that for any disjoint family (C;) C F, N2,C; € F, and
0(NZo Cj) = LiZ90(C)) . From Lebesgue’s theorem 1.5.7, for any increasing (C;) C F
such that ¢(Co) < o0, U2, Cj € F, and lim; 0(C;) = o(U2 C) -
Further, define

={AxB|(AB)eMu)xMmv)}, Pr={JG |G C P countable}
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P = {ﬂg ‘ d#GCP countable} :

For Ax B € Py, 1axp(x,y) =14(x)-1p(y),s0 A x B € F witho(A x B) = u(A)-v(B).
In particular, Py C F.If C x D € Py, then

(Ax B)\(CxD)=(A\C)xBU(ANC) x (B\D),

so any element of P; is the union of a disjoint countable family in Py. Thus, P C F.
Since P; is closed under finite intersections, any member of P; is the intersection of a
decreasing sequence from P; .

We claim that for all C C X x Y, there exists C C D € P, so that

(n@v)(C) = inf{e(D)|C C D € P1}, and (4 ®@v)(C) = (¢ @v)(D) = ¢(D) .

To thatend, let A; x B; € Py, C C D = U2 Aj x B;. Then o(D) < L2 u(A;)v(B))
with equality if the A; x B; are disjoint, and

(1@ v)(C) < if” ®v)(A; x B)) < foymj)ij) |
j= j=

This establishes the first part of the claim, seeing that (1 ® v)(C) is defined as the infi-
mum of the latter sums.

To prove the second part of the claim, we first establish (ii). If A x B € Py, then
(MVv)(AxB) <u(A)v(B) =0(AxB)<o(C) forall AxBCCeP.

By the first part of the claim, (4 ® v)(A x B) = u(A)v(B). For the y ® v measurability
of E=AXxB,letCCXxY.IfCCDe€P;,wehave D\ E,DNE € Py, and

(He@v)(C\E)+ (pev)(CNE) <e(D\E)+e(DNE) =e(D),

so by the first part of the claim, the measurability of A x B follows. Since y ® v = ¢ on
Py, this implies u ® v = ¢ on Py, by proposition 1.1.3 (ii).

W.lo.g., (1 ®v)(C) < oo, since otherwise (4 ® v)(C) = c0o = (X x Y), and we
observe X x Y € Py C P,. According the first part of the claim, to k > 1 we can
associate C C Cj € Py such that ¢(C;) < (1 ®v)(C) + 1. Then D = N}, Cx € P>, and
(u®@v)(C) = o(D) . Since any member of P, is measurable, we find o(D) = (¢ ®@v)(D),
by proposition 1.1.3 (iv). This completes the proof of the claim, and also of (i), since any
C C X x Y is contained in an element of P, of equal measure, and by (ii), these are
measurable.

As to (iii), if (1 @ v)(C) = 0, then there exists C C D € P, such that o(D) = 0, so
0(C) =0. If (y®v)(C) < o0 and C is ¢ ® v measurable, then thereis C C D € P,
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so that (1 ®v)(C) = (p®v)(D) = o(D). Thus, (u®@v)(D\C) = 0, in particular,
o(D\ C) = 0. This implies that

u(Cy) = u(Dy) forvae yev,

in particular, this quantity is v integrable as function of y . Furthermore,

o(C) = (D) = (19 v)(C) = [1cduew).

The remainder of (iii) for the case of finite measure follows by symmetry. The case of
o-finite measure is a matter of applying corollary 1.5.6.

For the case of simple functions, (iv) follows immediately from (iii). If f > 0, the
assertion follows from lemma 1.3.3 and corollary 1.5.6. The general case follows by
considering f = f* — f~. O

1.6.3. The construction of the product measure allows us to define the (outer) Lebesgue
measure in arbitrary finite dimensions. The one-dimensional Lebesgue measure £! is

given by

LYA) = inf{ ) diam A;

AC UAj,Ach} forall ACR,
j=0

j=0

where the diameter is taken with respect to the Euclidean distance and diam @& = 0.
The n-dimensional Lebesgue measure is defined inductively by £" = £"~! @ £!. Then
Lk ® Ll = rpk+t

Note £'([a,b]) = b —a for —co < a < b < 0. Indeed, suffices to consider a, b finite;
then diam[a,b] = b —a. Let a; = inf A;, bj = sup; A;, where [a,b] C U2, A;j, and we
may assume A; N [a,b] # @ and —c0 < aj < bj < co. Then a; < a for someiand b; > b
for some j. Moreover, b; > a and a; < b, so there exist jo = i,...,jm = j, such that

b]-k > aj,, for all k. Then

[e] m
Zdiam(Ak Zbk—ak Zb a]k —lli}b—ll.
k=0 k=0
Fubini’s theorem 1.6.2 implies L£" ([T [a;, bj]) = ITj_; b; — a; forall —co < a; < bj < 0.
By Carathéodory’s criterion, it follows easily that £" is a Borel measure. By its o-
finiteness, the Borel regularity follows form the Borel regularity on cubes.

1.7 Covering Theorems of Vitali Type

Since the subject matter of the following two subsections is rather technical in nature, a
few words on its significance are in order. In the problems we shall be studying in the
sequel, passages from local to global data, and vice versa, will often be of vital impor-
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tance. The technical device commonly used for such arguments will be the following;:
To estimate y1(A) for some set A, cover A by smaller sets in some collection F . Then
choose countable subfamilies G C F almost covering A, where the members of G have
some prescribed diameter. Conversely, if the members of G belong to some small neigh-
bourhood of A and are disjoint or posess a finite bound on the number of their mutual
intersections, their measure may provide a lower bound for y(A).

The covering theorems we shall prove concern the existence of such subfamilies.
Roughly, the theorems we shall prove fall into two categories: Those of Vitali type apply
to quite general families F , but provide subfamilies G such that certain enlargements of
elements of G (almost) cover A. The Besicovich type covering theorems, on the other
hand, apply to less general families F but provide covers by the original subfamilies G .

1.7.1. In what follows, let (X, d) be a metric space, and p a Borel measure.

Definition 1.7.2. Let F C P(X). Foreach Y C X, define F | Y = {F € F|[F C Y}.

We say that F is fine at x € X if inf,cper diam(F) = 0, and fine if it is fine at every
point. If A C X, we say that F u almost covers A if A\ U F is p negligible. The family F
is p adequate for A if for every open V C X, there exists a countable disjoint G C F such
that UG C V and G u almost covers VN A.

Theorem 1.7.3. Let the family F consist of closed sets, A = U]?”:O Aj be o-finite, and
o : {Ajlj € N} —]0,1[. Then F is p adequate for A if the following holds: For every
open V C X, there exists a countable disjoint G C F such that JG C V and

u((VNAY\JG) <o(A))-u(VNA;) forall jeN.

Proof. Since A is o-finite, we may assume that the y(A;) < oo are bounded. Let (B;) be
an enumeration of { A;|j € N} such that for all j, B; = A; for infinitely many i.

Fix an open V' C X, We claim that for all j € IN, there exist open V; C X and finite
disjoint G; C F such that JG; C Vj and

w((V;nB)\UG) <o(B)?-u(V;nB;) forall jeN.

To that end, we set Vy = V and Gy = & . Moreover, set V; = V; 1 \U Gj_1 in the jth step.
There exists a countable disjoint H C F such that JH C V;, and

w((VinB)\|UH) <o(Bj)-u(V;NBj).

Since ¢(B;)!'/? > ¢(B;), we may choose G; C H to be an appropriate finite subfamily.
(Note that the members of H are y measurable since they are closed and y is Borel.) This
proves the claim.
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Now, let G = U]?”:O G; C F. Then G is countable and disjoint,

UscUvcv aa viUg=Nv\UG=NVY
j=1

j=0 j=0

If k is fixed, then A, = B i for infinitely many j, hence

#(Vin N A = (A V) \UG)) < o(A)? - u(Vin Ay)

for infinitely many j € IN. Since V;,; C V; and p(Ax) < oo, we find

RV ADNUG) = (N7, V10 Ax) = lim; (V0 Ag) = 0.

Hence, (VN A) \ UG is u negligible as the countable union of y negligible sets. Since V

was arbitrary, F is y adequate for A. U

Corollary 1.7.4. Let F consist of closed sets, A = U;";O Aj be o-finite. If F is y adequate
for each A;, then it is y adequate for A.

Definition 1.7.5. Let ¥ € P(X),é : F — [0,R],and 1 < T < oo. Foreach F € F,
define the (6, T)-enlargement of F as

F=F.r=J{GeF|GNF,5G)<1sF)}.

A common choice for § is §(F) = diam(F) . Then we have m < B(x, (14 27)r) and
(1+27)r = 5r for T = 2. For this reason, the following theorem is sometimes called the
5r covering theorem.

Theorem 1.7.6. Let ¥ C P(X),d : F —]0,R],and 1 < T < oo. Then F contains a
disjoint subfamily G such that |J F C U{G ’ Geg}.

We shall use the following the set theory lemma (repeatedly).

Lemma 1.7.7. Let A be set, P a reflexive predicate defined on A x A, 0: A —]0,R], and
1 < T < co. There exists a subset B C A so that

P(a,b) or P(b,a) forall a,b € B (1)
and foralla € A\ B,
—P(a,b) and To(b) > 0(a) forsome b€ B. (2)

Proof. Let QO C P(A) consist of those B C A such that (1) is satisfied, and for alla € A,
either P(a,b) for allb € B, or (2) is satisfied. The set () is ordered by inclusion. Observe
@ € Q. Let C C Q be a maximal chain, by the Hausdorff maximality principle. Let
B=UC.

21
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Since C is a chain, any two 4, b € B belong to some C € C, thus P(a,b) , and condition
(1) is valid. Clearly, for alla € A\ B, either (2) is satisfied, or P(a,b) forallb € B. Hence
B € (3, and thus B is the largest element of C .

Seeking a contradiction, assume that for K = {a’ € A|P(da’,b) forall b € B}, there
exists 2 € K'\ B. Then a may be chosen such that 7- ¢(a) > sup o(K) . Let B" = {a} UB.
Then P(b,c) or P(c,b) for all b,c € B. Moreover, P(a,a) obtains by reflexivity. For
b € B, we have P(a,b) by assumption, so (1) is satisfied for B'. If a’ € A\ B/, then either
there exists b € B such that =P (a,b) and to(b) > 0(a’), or @’ € K. In the latter case,
To(a) > ¢(a’), so in any case, condition (2) is satisfied for B’. This proves that B' € (),
contrary to the maximality of B. Thus, B satisfies (2) foralla € A\B. ———— [
Proof of theorem 1.7.6. We may employ lemma 1.7.7 with A = F, ¢ = §, and the predi-
cate P(F,G) = F#G = FNG=0. O
Corollary 1.7.8. Let F be a closed fine coverof A C X,¢: F — [0,R],and 1 < T < c0.
Then there exists a disjoint G C F such that UF C U{G|G € G}, and for any finite
HCG,

A\UH | J{G|GeG\H}.

Proof. Let G C F be constructed as in theorem 1.7.6. The set H = |JH is closed, so for
any x € A\ H, there exists ¢ > 0 such that B(x,¢) N H = @. Since F is fine, there exists
F € F withx € F C B(x,¢). On the other hand, by the construction of G, there exists
GeGsuchthatFc Gand FNG #@.ButFNH=o,soweseethat G¢ H. - [
Theorem (Vitali-Federer) 1.7.9. Let u be finite on bounded subsets, F a closed fine cover
of A,6:F —]0,R],and 1 < T, A < 0. If u satisfies the doubling condition u(F) < Au(F)
for all F € F, then F is y adequate.

Proof. In particular, X is o-finite for . In view of corollary 1.7.4, we may assume that
A is bounded. By the same token, it suffices to consider bounded open V- C X. The
family | V is a closed fine cover of V N A. Apply corollary 1.7.8 to obtain a disjoint
G C F | V such that

(VnA\UH cU{G|GegG\H}

for all finite H C G. Because 0 < u(G) < A - u(G) forall G € G, the set G is countable.
Otherwise, we would have u(G) > % for some k > 1 and G € G’ where G’ is some
infinite countable subset set of G, and this would imply u(V) > Ygcq u(G) = oo,
contradiction. Hence,

Y u(G) <A Y u(G) S Au(V) < 0.
Geg Geg

Moreover, for all ¢, there exists a finite H C G such that

e Z\ w(G) = u(VnA\UH) = u((VnA)\UI).
GeG\H
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Therefore, the right hand side vanishes, which proves the theorem. —————— [

1.7.10. Vitali’s classical theorem is obtained from theorem 1.7.9 as follows: Let u be finite
on bounded subsets, F a fine family of closed balls, §(B(x,r)) = diam(B(x,r)) = 2r.
Whenever y satisfies the diametric regularity condition

u(B(a,(1+27)r)) <A-u(B(a,r)) forall B(ar)ec F,

then F is p adequate for any A C JF . (The subfamily of F consisting all balls with
radius < R for some R > 0 is still fine.)

Sufficient (but not necessary) for the diametric regularity is the existence of positive
numbers 0 < &, B < oo such that

1(B(a5))

a < p

< B forall s=r (1+27)r, B(a,r) € F.

For instance, L"(B(a,r)) = c, - " where ¢, > 0 is some constant only depending on
n € IN, and L" is n-dimensional Lebesgue measure on R".

We shall have to keep track of the centres of balls in the following, and in a general metric
space, these are not determined uniquely by the ball in consideration (e.g., consider a
discrete space X, #X > 2). Hence the following definition.

Definition 1.7.11. A covering relation is a subset of {(a, A)la € A C X}. For a covering
relation F and a subset Y C, let F(V) = pr,((V x P(X)) N F). Then F is said to be
fine, open, closed, Borel etc. if 7 (X) is fine, open, closed, Borel, etc.

Let V be a fine Borel covering relation of X . We say that V is a u Vitali relation if for
each Y C X and each W C V which is fine on Y, W(Y) contains a countable disjoint
subfamily y almost covering Y .

Whenx € X,G C P(X), f: G — R, and V is a covering relation fine at x, define

limsup,,_, f =limsupy_p_,, f(F) = lime—o+ SUP y p)c 7(x ), diam(F)<e f (F) #
and similarly for liminfy ., f. If limsup,,_,, f = liminfz_,, f, we write limy_., f for
the common value.

Theorem 1.7.12. Let y be finite on bounded subsets, } a bounded, closed, and fine cov-
ering relation, 6 : V(X) —]0,00],and 1 < T < co. Then V is a u Vitali relation whenever

0 <v(x) =limsupy.p_,, [5(13) + 74()} < oo forp-ae xeX.

u(F)

Proof.LetY C Xand W C V be fineon Y. Let

Wy =< FeW(Y) 5(F)+@<n forall n € N.
{ ‘ u(F) }
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Then W, is fineon A, = YN {v < n}. Clearly, 6 | W, < n,and pu(F) < n- p(F) for all
F € W,, so by Vitali’s theorem 1.7.9, W, is y adequate for A, . In particular, W(Y) is u
adequate for A, . Since (A,) u almost covers Y, corollary 1.7.4 implies that W(Y) is u

adequate for Y, in particular, the assertion. O

1.8 Covering Theorems of Besicovich Type

1.8.1. In what follows, let (X, d) be metric and p a Borel measure on X .

Definition 1.8.2. Let a,b,c € X, b,c # a. The angle Z(a, b, c) defined as

Z(a,b,c) = inf{ Zgz'g ’ x € X,d(a,x)=d(a,c),d(ax)+d(x,b)= d(a,b)}
if b, c are ordered such that d(a,c) < d(a,b), and by interchanging b and ¢, otherwise.
The condition d(a, x) +d(x,b) = d(a, b) means that x lies on a geodesic froma to b, so x

may be thought of a ‘normalisation” of b (w.r.t. the origin a).

1.8.3. If X is some normed vector space, leta = 0. Then x = H -band

b

£(0,b,¢) = HHbH_HzHH

Let X be finite-dimensional, so S(X) is compact. For each 57 > 0, there exists a number
N such that S(X) is the union of N closed balls of radius 7 .

If B C X\ Osuchthat Z(0,b,c) > y for all distinct b, ¢ € B, then each ﬁ is contained
in at most one of these balls, whence #B < N. (Note that the condition Z(0,b,c) > 0
implies that b, c are not collinear.) This consideration suggests the following definition.

Definition 1.8.4. Fix a triple (&,#,{) where 0 < { < 00,0 <7 < %, and 1 < ¢ € N. The
metric d of X is said to be directionally (¢, n,{)-limited on A C X if the following is true:
Whenever a € A, then any selection B C AN B(a,&)° \ a such that Z(a,b,c) > 5 for all
b,c € B,wehave#B < (.

1.8.5. This notion is clearly invariant under isometries. Since translations on a normed
vector space are isometries and act transitively, our above considerations show that in
particular, the metric induced by the norm on any finite dimensional normed vector
space X is directionally (oo, #,{)-limited on X for any # > 0 and { greater or equal the
Lebesgue Z-number of $(X). The geodesic length metric of a Riemannian manifold
with suitable curvature bounds is also directionally (¢, 7, {)-limited for some choice of
parameters.

In a general metric space, the centre and the radius of a ball B = B(x,r) are usually
not determined uniquely by B (consider, e.g., any discrete space X, #X > 2). We shall
therefore consider subsets P C X x]0, 00| of pairs of centres and radii before passing to

the corresponding families of balls.
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Definition 1.8.6. Let P C Xx]0,00] and 1 < T < co. We say that P is T controlled if and
only if for all (a,r), (b,s) € P, (a,r) # (b,s),

s r
d(a,b)>r>% or d(a,b)>s>%.

In particular, a # band a ¢ B(b,s) or b & B(a,r), so B(a,r) # B(b,s). Thus, for the
family of closed balls associated to a T controlled set P, the centre of each B € P is
uniquely determined.

Given (&, ,(), a number 7 shall be termed permissible if

l<t<2-y and 77+2j;7+T(T—1)<1.

Since 77 < %, son+ ﬁ < % + % < 1, any sufficiently small T > 1 is permissible.

Lemma1.8.7.Let1 < T < o00,0 < pt < 00, and P C Xx]0,u]. Then there exists Q C P
such that d(a,b) > r + s for all distinct (a,7),(b,s) € Q, and for all (a,7) € P, there
exists (b,s) € Qsothatd(a,b) <r+sands > L.

Proof. We may employ lemma 1.7.7 with A = P, ¢ = pr,, and

P((a,r),(b,s)) = (a,r) # (b;s) = d(a,b) >r+s

to achieve the statement. O

Proposition 1.8.8. Suppose d is directionally (¢, #7, {)-limited on A C X, and 7 is permis-
sible. Suppose that P C AX]0, 00| is T controlled. If there is (a,7) € P such that

d(a,b) < ¢, d(ab) <r+s forall (bs) € Psuchthats > g,

then#P <20+ 1.
Proof. Letk = 2_7’7 . Define

P ={(bs)eP|0<d(ab)<kr} and P,={(bs)ecP|d(ab)>kr}.

We have already noted that since P is T controlled, pr; : P; — B; is a bijection onto
B; = pr]-(Pj) . Thus #P — 1 = #By + #B, . We shall prove that any two disctinct b, ¢ € B;
satisfy Z(a,b,c) > 1, to conclude #B; < {, whence the theorem.

Let (b,s), (c,t) € P; be distinct, d(a,b) > d(a,c). Thus, choose any x € X such that
d(a,x) =d(a,c)and d(a,x)+d(x,b) = d(a,b). We have

d(x,c) > —d(x,b) +d(b,c) =d(a,c)—d(a,b)+d(b,c) .

Now, d(a,b) > %, sincer > L and either d(a,b) > rord(a,b) > s > L, since Pis T
controlled.
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In case j = 1, we have d(a,b) < kr. Moreover, d(b,c) > ~ because either d(b,c) > s
ord(b,c) > t,ands,t > L by assumption. Hence,

d(x,c) > d(a,c) —kr+£ =d(a,c) —%-(1—17) >d(a,c)—d(a,c) - (1—n)=d(ac) 7y,

whence Z(a,b,c) > 1.
Incase j = 2,d(a,b) < r+s,and d(a,c) > min(kr, ). Moreover, d(b,c) > s or
d(b,c) >t>2,s0d(b,c)—s>0> (1—-T1)tor

dbc)—s>t—s>t—1t=(1—1)t.
In any case, d(b,c) —s > (1 — 7)t, which implies

d(x,c) >d(a,c) —r+d(bc)—s>d(a,c)(1—k)—t(t—1)

T
>d(a,c)- (1 vy —7(T— 1)) >d(a,c)-n,
because T is permissible. Hence, Z(a,b,c) > 1. This completes the proof. —— O

Proposition 1.8.9. Let d be directionally (¢,7,¢) limited, T be permissible, and assume
the subset P C Xx|0,u[, where 0 < u < & , is T controlled. Then, for the covering

relation
Bp = {(a,B(a,r)) | (a,r) € P},

Bp(X) is the union of 2{ 4 1 disjoint subfamilies.

Proof. Let Py = P, Qo = <, define P; = P;_4 \ Qj-1,and let Q; C P; be subset con-

structed in lemma 1.8.7. Since d(a, b) > r + s for all distinct (a,7), (b,s) € Q;, the collec-

tion Bg, (X)) is disjoint. The proof shall be complete once we have shown that Py;.» = & .
To that end, seeking a contradiction, assume the existence of (a,7) € P2 C p;.

Then there exist (b;,s;) € Q; such that

r
. < . . — .
d(a,bj) <r+s;<g and s;> -

The collection Q = {(a,7)} U {(bj,5;)[j =1,...,20 + 1} has #Q = 27 4 2. On the other
hand, it is T controlled as a subset of P, and hence satisfies the assumptions of proposi-
tion 1.8.8, so #Q < 2¢ + 1, contradiction. O

Lemma18.10.If1 < T < 00,0 < y < oo, and P C Xx]0, [, then there exists a T
controlled Q C P such that pr, (P) C UBg(X).

Proof. Apply lemma 1.7.7 with A = P, o(a,r) =1,

P((a,r),(bs)) = (ar) # (bs) = d(a,b) >s> %

Thus there exists R C P such that P((a,r),(b,s)) or P((b,s), (a,r)) for all (a,r),(b,s) €
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R, which means that R is T controlled. Moreover, for all (a,7) € P, there exists (b,s) € R
such thatd(a,b) <sors < £,and s > r; thus, d(a,b) < s,and thismeansa € B(b,s) €
Br(X) . Hence the assertion. O

The essence of the following theorem is that under favourable conditions (i.e. if the met-
ric is directionally limited), there is a fixed number N such that ball covers with self-
intersection number bounded by 2N suffice to cover any subset.

Besicovich Covering Theorem 1.8.11. Let d be directionally (&, 7, ) limited on A C X,
and fix 0 < u < % . If F = Bp(X) for some P C Xx|0,u[, A C pry(P),ie. Fisa
collection of closed balls with radii less than y, and such that any a € A is the centre of
some ball in F, then A is contained in the union of 2{ + 1 disjoint subfamilies of F .

Proof. First choose some permissible 7. There exists, by lemma 1.8.10, a T controlled
subset Q C P, such that A C pr,(P) C UBg(X). By proposition 1.8.9, Bo(X) is the
union of 2¢ + 1 disjoint subfamilies. O

Corollary 1.8.12. Under the conditions of theorem 1.8.11, assume that y is a Borel mea-
sure on X and A is separable and c-finite for 1. Then F is y adequate for A if it is fine.
Moreover, the o-finiteness of A is immediate if y is finite on bounded subsets.

Proof. We show that the hypothesis of theorem 1.7.3 is fulfilled for the choices Ay = A
ando(A) = 252%

Let V C X be open. Then any point of V N A is the centre of some member of F | V.
Therefore, theorem 1.8.11 gives the existence of disjoint subfamilies H; C F | V, j =
1,...,2C+1,suchthat VN A C U?S{l UH, . Since A is separable, we may assume each
of the ’Hj be countable. In particular, if y is finite on bounded subsets, the o-finiteness
for p of A follows. In any case, U H; is 4 measurable.

Observe
20+1

n(VNA) < 21 wANUH;) -
=

Hence, there exists 1 < j < 2§ + 1 such that u(ANUH;) > 575 - #(V N A). By the
measurability of U H;, we infer

u(VnA\NUH) =u(VvnA) —u(A\UH)) < 2€2€1 u(VNA),

which is just the required relation. 0

Corollary 1.8.13. Assume X = |J;, Ax where d is directionally limited on Ay for all k. If
X is separable and o-finite for y (e.g. p is finite on bounded subsets), then V = By, g o[ ,
the covering relation of all closed balls in X, is a u Vitali relation.

Proof.Let VW C V, Y C X, such that W is fine on Y. By corollary 1.8.12, W(Y) is u
adequate for Y N Ay for all k € IN. By corollary 1.7.4, W(Y) is u adequate for Y . O
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1.9 Differentiation of Measures

In all that follows, let (X, d) be separable and the countable union of sets on which d is
directionally limited. Moreover, let i, A be Borel regular measures such that A is finite
on bounded subsets. By corollary 1.8.13, V = By, [ is a Vitali relation for A .

Definition 1.9.1. Let x € X. Define j = coforallco > r >0, =0forallr € [0, 0], s0O
that { <c¢ < a <bcforalla,b e [0,00],c € [0,00[; let

n(B(x€)) _ L n(Blxe))

Dy pu(x) = limsup, = and D, u(x) = liminf._o4 Y

(B(x,¢))
Whenever D3 p(x) are equal, let Z—K(x) = Dyu(x) = Dy pu(x). Whenever D,y exists, it
is called the Radon-Nikodym derivative of y by A, or the density of y w.r.t. A.

The aim of this subsection is to establish sufficient and necessary conditions for the ex-
istence of Dy, and to see how u can be recovered by integrating D,y against A .

Lemma1.9.2.Let0 <« < oand A C X. Then
(i). A C {D,u < a}implies u(A) <a-A(A),and

(i). A C {Dju > a}implies u(A) > a-A(A).

Proof. Since A is o-finite for A, we may assume A(A) < 0. Lete > 0. By theorem 1.1.9
(i), there is an open U D A such that A(U) < A(A) +¢.

For the subfamily W C V of all (4,B), B = B(a,r) C U, for whicha € A and
#(B) < (a+¢)A(B), Wis fine on A by assumption. Also by assumption, A is contained
in the union of balls of finite ¥ measure, so A is o-finite for . By corollary 1.8.13, W
is p Vitali relation on A. Thus, W(A) is u adequate for A, and there exists a countable
disjoint G C W(A) p almost covering A. Then,

A)< Y uB)<(ate)- Y AB)<(a+e)-A(U) < (a+e)- (A(A)+e) .
Beg Beg
Hence follows the assertion (i). The statement (ii) follows analogously. ——— [

Proposition 1.9.3. The function D, i (defined as co whenever D, (x) does not exist) is A
measurable. Moreover, D, u(x) exists and is finite for A a.e. x € X.

Proof. First, let us establish the A measurability. To thatend, fix 0 < a < b < co. It
suffices to prove

AMC) Z A(CN{Dyu < a}) +A(CN{Dyp >1b}) forall CCX.

Indeed, this implies by theorem 1.1.10 that # L (D '(IR)) is a Borel measure.
Thus, let A C {Dyu < a} and B C {D,u > b} be bounded. There exist Borel sets
Ao, A1 D A such that A(A) = A(Ag) and u(A) = u(A1). Then A C AgN Ay C Aj,
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j=0,1,s0A(A) = A(A’) and p(A) = u(A’) for the Borel set A’ = AypN A;. Similarly,
there is a Borel B’ C B such that A(B) = A(B’), u(B) = u(B’).
Then
W(A'OB) 2 (AN B) = j(A') — u(A\ B) > u(A' N ),

sou(A’NB") =u(ANB') =u(A'NB), and equally for A. By lemma 1.9.2,
alM(A'NB)=ar(ANB) = u(ANB)=u(A'NB) =2 bA(A'NB) =bA(A'NB).
Since 0 < a < b < oo, we find A(A’NB’) = 0. Finally,
AMAUB) =A((AUB)NA")+A((AUB)NB") = A(A) + A(B),

and this proves the A measurability of D, .
To see that D, exists A a.e., consider the subfamily ¥V C V consisting of the pairs
(a,B(a,r)) with B(a,r) A negligible. Then the set of points x at which D, u(x) does not

exist or is infinite is the following union:

PUQU |J {Dyu<a<b<Diu}.
a,beQ,a<b

Here, P is the set of points at which W is fine, and Q the set of all x so that D ji(x) = oo.
Since W(P) is fine on P, it is A adequate for P, and hence P is A negligible.

For any bounded A C Q, lemma 1.9.2 gives cA(A) < u(A) < oo forallc > 0, so
A(A) = 0, and Q is A negligible. For any bounded A C {D; < a < b < D}u}, the
lemma gives bA(A) < u(A) < ar(A), so A(A) = 0 again. In conclusion, the set of all
points x for which D, u(x) does not exist or is infinite isa A zeroset. ———— [

Definition 1.9.4. We say that u is absolutely continuous w.r.t. A, in symbols, y < A, if
A(A) = 0 implies u(A) = 0 for all A C X. If, on the other hand, there exists a Borel
B C X such that A(X \ B) = u(B) = 0, then A and y are said to be mutually singular,
written L A. Obviously, the relation < is a quasi-order (reflexive and transitive), and
1 is symmetric.

Theorem (Radon-Nikodym) 1.9.5. We have

u(B) > / DiudA forall B e B(X).
B

Moreover, we have equality if and only if u < A, if and only if D, y < co pi a.e.

Proof. Let 1 < t < co. Since D)y is A a.e. existent and finite by proposition 1.9.3 and
corollary 1.5.6, we have

/B A¥ k;w' BA{tk<D,u<tk+1} AH Z ( { N2 })

k=—o0
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<t Y u(BN{F <Dau<t**1}) <t u(B),
k=—c0
which proves the inequality.
By proposition 1.9.3, Dyu < o0 A-a.e. If p < A, the statement holds y a.e. Hence,

[ee]

uB)= Y u(BN{F <Dy <1} < Y FIABN{* <D < 1))

k=—o00 k=—00

<t / D dA<t-/D dA .
k;OO {tng/\]l<tk+l} )L‘u B )L‘u

If, conversely, the equality holds for all Borel B C X, let A C X be A negligible. There
exists a Borel B D A such that A(B) = A(A). Then u(A) < u(B) = [ DapdA =0, s0
wehave y < A.

If y < A, note that D, u < D)pu < o0 A a.e. implies finiteness y a.e.

Finally, assume D;A <oopae Let AC X,A(A)=0.Foranyn € N,

H(AN{Dyp<n}) <nA(A) =0,

so p(A) < Lo w(AN{Dyp < n}) =0. |
Corollary 1.9.6. If A and u coincide on all small closed balls, they are equal.
Proof. Indeed, if this is the case, then D,A(x) = 1 for all x € X, so by theorem 1.9.5,

u(B) = /BDW dA = A(B) forall B € B(X).

Since u and A are Borel regular, this gives 4 = A by the device used in the proof of

measurability in proposition 1.9.3. O

Remark 1.9.7. The above statement is false in arbitrary metric spaces, even if they are
supposed to be compact. (Recall that we have assumed the condition that the metric is
o-directionally limited.)

Lebesgue Decomposition Theorem 1.9.8. There exists a Borel regular measure v < y,
finite on bounded subsets, and a A measurable f : X — [0, 0], such that A L v and

1(B) :/de/\—kv(B) forall B € B(X).

Moreover, v = 0 if and only if y < A.

Proof.Let A= {D, =0}, v=pulL A.Byproposition1.9.3, A(A) =0,sothatA L v.
Sincep L (X\A)(A)=0and D, (pL (X\A)) <D,u,wehaveD, (uL (X\A))is
finite p L (X \ A)-a.e. By theorem 1.9.5, this implies 4 — v < A. By the same token,

1(B) = (L (X\ A))(B)+v(B) = /BDA(y L (X\ A))dA +v(B) forall B € B(X).
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Finally, y < Aif and only if y(A) =0,ifand onlyifv=pL A=0. —— O

Lebesgue-Besicovich Differentiation Theorem 1.9.9. Let f : X — IR be a locally A
summable function. Then

. 1
lim, o4 AB,) Jon fdA =f(x) fordaexecX.

The function f* which equals the left hand side whenever the limit exists, and zero
otherwise, is called the precise representative of f .

Proof. We may assume f > 0. Define y by u(A) = [, fdAforall A C X. Then u is
Borel regular and finite on bounded subsets. Moreover, 4 < A, so

/BDwdA:y(B) :/de/\ forall B € B(X).

This implies that Dy = f A a.e. Thus,

1 ~ #(B(x,¢)
A(B(x,€)) '/B(x,s)fdA ~ A(B(x,¢))

converges to D u(x) = f(x) for A a.e. x € X, by proposition1.9.3. ————— O

Corollary 1.9.10. If A C X is A measurable, then

A(ANB(x,¢))

A(B(x,0)) =14(x) forraexeX.

limg*)()«k

Corresponding to whether the left hand side is 0 or 1 for x € X, this point is called of A
density O resp. 1 for A.

Proof. This is just theorem 1.9.9, applied to the function 14 . U

Definition 1.9.11. Let 1 < p < coand f : X — R. Then f is said to be p-summable for u
if f is y measurable and |f|? is y-summable. f is said to be locally p-summable for u if f is
p-measurable and p-summable for L U for U in a neighbourhood basis for X .

Corollary 1.9.12. Let 1 < p < 0 and f : X — R be locally p-summable for y. Then

lim_o+ -/B(x£)|f—f(x)|”d/\:0 fordae x € X.

_
A(B(x,€))

A point x € X for which this equality holds is called a Lebesgue point of f .
Proof. Let (1) C R be a dense sequence. By theorem 1.9.9, there exists a y cozero A C X
such that

lim, 0+ )-/B( )]f—rklpd}\:]f(x)—rk]” forall x€ A, ke N.
X,e

_
A(B(x, )
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Letx € Aand d > 0, and fix some integer k € N such that |f(x) — 74|V < & . Abbreviate
Ye = A(B(x,€)) ! We may apply the inequality
(a+Db)P <2P71. (aP +-b¥) wvalidforall a,b>0

to the effect that

limsup, o, 7e [ [ = f(x)|"dA
B(x,€)

<2 L. [limsupsﬁo_F Ve /B(xg)\f— re|PdA 4+ |f(x) — rk|p}

=2"-|f(x) —nlP <9,

whence our claim. O
The following corollary is established by the same principle.

Corollary 1.9.13. Let f : X — E be y measurable, where E is a separable normed vector
space. If || f|| is # L A summable for each bounded A € M(u), then

1 — .
A(B(x,1))

Proof. For x € X, Let Ay be the set of all e € E such that

lime_ s /||f ~f(x)|dA =0 forrae x€X.

. 1
lime—o. ey [ = ellad = ) el

Fix a dense sequence (¢;) C E, and apply theorem 1.9.9 to ||f — ek|| to achieve the exis-
tence of a A negligible set Ny so that ¢y € A, forall x € X\ Ni. Letting N = U, Ak,
we find ¢y € A, forallk € N, x € X\ N. By the same device as above, A, = X for all
x € X\ N, so the assertion follows. U

Remark 1.9.14. Our presentation follows [EG92] rather closely, although some parts are
from [Mat95] (in particular some of the material on differentiation of measures), and
others from [Fed69] (in particular the subsections on covering theorems).
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? Hausdorff Measure

21 Carathéodory’s Construction

In all that follows, let (X, d) be metric.

Definition 2.1.1. Let ¥ C P(X), 0 : F — [0,00], and 0 < § < oo. Define the size §
approximating measure j; by

us(A) = inf{ZGeg o(G) ‘ G C F countable, diamG < dforallGe G, A C Ug}
forall A C X. Then d — ps(A) is decreasing for all A C X, so we may define
u(A) =lims_o4 us(A) forall AC X.

This is the measure associated to the Carathéodory construction for F and ¢. Clearly, it suffices
to know the values of ¢ on non-void members of F to define ys and .

Proposition 2.1.2. The set functions ;5 , 4 are measures. If F is a Borel family, y is a Borel

regular measure.

Proof. The empty set & can be covered by an empty partition, so yi5(@) = 0. Take some
A C Uiy Ak . Fix e > 0 and let Gy C F be countable covers of Ay such that diam G <
forall G € G = Uglo Gk, and Ygeg, 0(G) < ps(Ax) + 57 forallk € N. ThenG C F,
and is countable. Moreover,

(o) oo € oo

H(A) <Y ¥ 0(6) < Y (ms(A0) + 357 ) = 1o sl Aw) +e.

k=0 GEGy k=0 k=0

Hence, y; is a measure. It follows easily that y is also a measure.
Now, assume that F is a Borel family. Fix A,B C X such that dist(A,B) > ¢. Let

G C F be a countable cover of AU B, diam G < d forall G € G. Consider

HCZ{GEQ‘GOC#Q} for C=A,B.

Then HoNHp = @ and H4 U Hp covers A U B since this is the case of G. Hence Hc
covers C for C = A, B, and it follows that

us(AUB) = pus(A) + us(B) .

Hence, y(AUB) > u(A) + u(B) forall A, B C X such that dist(A, B) > 0. By Carathéo-
dory’s criterion (theorem 1.1.10), u is a Borel measure.

Let A C X. To prove Borel regularity of ;1, we may w.l.o.g. assume yt(A) < oo. Thus,
there exist Borel By O A such that ps(By) < ps(A) + ¢ . We may assume By 1 < By, and
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thus
#s(A) < ps(B) = limy ps(Bi) < ps(A)

for B = 2, B;. Thus, there exist Borel C; D A such that pi1/k(A) = p1/k(Cy) for all
k> 1. Let Dy = Ny2; C¢. Then Dy is Borel and for any ¢ > k,

H1/k(A) < p1k(Dy) < paye(Cr) = p1k(A),

s0 p1/k(A) = p1,k(Dy) forall ¢ > k. Hence,

#(A) = supy p1/k(A) = supy infy py /1 (Dy) = inf, u(Dy) = p(D)

where D = N7, Dy . O

Remark 2.1.3. The above proof follows [Fed69], with some details filled in.

2.2 Hausdorff Measure and Dimension

Definition 2.2.1. Let 0 < s < oo and define ws = 7%/%-T (5 +1) -1 (For integer values
of s, this is the Lebesgue measure of the s-dimensional Euclidean unit ball.) Set

0s(F) = % -(diam F)® forall @ # F C X.

The s-dimensional Hausdorff measure H* = 'H;, is the measure associated to the Carathéo-
dory construction for P(X) and o5 defined as above. Since gs(A) = 0s(A), one obtains
the same measure by considering instead all closed subsets of X. Hence, by proposi-
tion 2.1.2, H® is a Borel regular measure. Note that it is, in general, not o-finite.

Theorem 2.2.2. Let X be separable, Y metric, f : X — Y be Lipschitz, and 0 < s < co.
For any Borel A C X, we have

Lip(f) - H:(4) > [ N(f | Ay) d¥(y)

Here the multiplicity function of f, N(f | A,y) =#A N f~'(y), is H* measurable.
Proof. Let 0(A) = H*(f(A)) . Since diam(f (F)) < Lip(f) - diam(F), we find

o(A) < Lip(f)* - H°(A).

Let u be the measure associated to Carathéodory’s construction for B(X) and o. We
wish to prove

u(A) = /N(f | A,y)dH(y) forall A € B(X).

Let P; C B(X) be countable Borel partitions of A, such that each B € Pjy is the
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union of members of P;, and lim; supp P diam(B) = 0. Define

g = ZBer lgpy forall jeNN.
Then, forally € Y,
giy)=HBEeP|fH NP #S}<N(f|Ay).
Clearly, gj < gj+1- Let B C f~!(y) N A be a finite subset. There exists
0 <6 <infy ety d(x,y) .

Let k € IN such that diam(B) < d forall B € Ppand ¢ > k. Forall / > kand all x € B,
there exist x € By € Py. Then ByN B, = @ forallx # y, x,y € B. Hence g/(y) > #B,
forall ¢ > k. Thus, N(f | A,u) = sup; gj is H* measurable. By corollary 1.5.6,

/N(f | Ay) dH (y) = Sup; ZBGP]- H(f(B)) = Sup; ZBEP]- o(B) .

Clearly, u5(A) < Ypep, 0(B) < Lpep, #(B) = p(A) forall £ > k (¢ is o-subadditive, and
hence < ). Hence, the right hand side equals y(A) . Moreover,

sup; ) ep 0(B) < Lip(f)”-sup; ), H*(B) = Lip(f)- H'(4),

PEP,

hence the assertion. U
Corollary 2.2.3. Let X be separable and f : X — Y be Lipschitz, A C X Borel and
H*(A) < co. Then for H* a.e.y € Y, AN f~1(y) is countable.

Proof. By theorem 2.2.2, N(f | A,u) is H® summable, and thus H° a.e. finite. — [
Theorem 2.2.4. Let 0 < 5 < co.

(). HOis counting measure.
(). H' = L'on X = R.

(iii). If X is a separable normed vector space, then for A > 0, H*(A- A) = A° - H*(A),
and forx € X, H*(A+x) = H*(A).

(iv). OnR", whenever s > n, then H* = 0, and H" is locally finite.
Proof of (i). Observe wy = 1, in fact go(A) = 1 for all A # @. Since the set of all

singletons in A C X is a partition of A, we find for all countable A that

HI(A) <#A =} 0o(a) < ) H'(a) = H(A).

acA acA

If A is infinite, we thus have H°(A) = co, and if A is finite, H(A) = #A.
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Proof of (ii). Note w; = 2, and let A C R. By definition, £!(A) < H}(A) < H!(A) for
allé > 0. Fixd > 0, and a countable cover (Ay) of A, and let Ayy = AN [0¢,6(¢ +1)]
forall ¢ € Z. Then (Ays) covers A, diam Ay <, and Yy diam(Ay,) < diam(Ay) for
all k € N. Thus,

[ee]

diam(Ax) > Y )z dam(A) = H(A) .
k=0

Taking the infimum over all (A;), we deduce £L1(A) > H](A). Taking the supremum
over J, it follows that H!(A) = L1(A).

Proof of (iii). This follows from theorem 2.2.2 by considering

d(y) =A* .y and t(y)=x+y.

Proof of (iv). For fixedm > 1, C = [0,1]" is the union of the C(a,b) = []i_;[aj, bj] such
that 0 < a; < b; <mand m - (b]- — a]-) = 1. Then diam C(a,b) = % , and the number of
such cubes is m" . Hence,

/2 n—s
s ws -1 -m
\/ﬁ/m(c) S 7s :

It follows that H*(C) = 0 fors > n,and H"(C) < “’5'2715/2

union of copies of C, and translates of scaled versions of C exhaust a neighbourhood

< 00. Since R" is the countable

basis, this entails the claim. O

We note the following lemma.
Lemma 2.2.5.If A C X and H;(A) = 0 for some J, then H*(A) = 0.

Proof. Let e > 0, w.l.o.g. s > 0. Then there exists a countable cover G of A such that
w .
ZGeg 2—55 -diam(G)® < e.

Then diam(G) < 0 = 2¢/ - — 0, s0 we find H°(A) = lime—o+ H5 (A) =0. — O
Proposition 2.2.6. Let A C X and 0 < s < t < oo. Then H*(A) < oo implies H'(A) = 0.

Proof. Given § > 0, choose a countable cover G of A, diam(G) < ¢ for all G € G, with
w .
Y ces 2—: -diam(G)* < H5(A) +1 < H°(A) +1.

Then

" wt . ' wt - ot—s
Hs(A) < Zceg ot diam(G)" < w, - 2t—s

Hence, H°(A) = 0, as asserted. O

(H(A)+1).
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The previous results motivate the following definition.

Definition 2.2.7. If X is metric, then its Hausdor{f dimension is defined to be
dimy X = inf{s € [0,00[ | H*(X) =0} € [0,00] .

Clearly, dimy Y < dimy X for all Y C X. Also dimy R" < n by theorem 2.2.4 (iv). But

it is easy to see that H"(R") = oo, so dimy R" = n. (In fact, we shall see below that

H" = L" on R".)

We digress briefly to construct ‘fractal” sets of non-integral Hausdorff dimension.

228. Fix 0 < A < % . Inductively, define for all k € IN intervals Ik]- ,1 <)< 2k,
= [0,1]. Then, fork > 2,1 < j < 2K1, let Iipj_1, Ixoj, be the

closed intervals of diameter A¥ obtained from Iy_1,; by deleting an open interval of length

as follows. Let Iy,

(1 —2A) - A¥1 at the centre of Iy_1,j, such that max I 5; 1 < min ;. The compact

co 2k

CA:mUIk,jC[Ol]

k=0j=1

is called the Cantor A-set.

log2
log A *

Proposition 2.2.9. Let 0 < A < 1. Then C, has the Hausdorff dimension s = — In

particular, any number in [0, 1] is attained as the Hausdorff dimension of a subset of R .

Proof. Lett € R. Observe diam(Iy ;) = AK, so

2k Atk
H(Ch) wtz o = o (20"

Whenever t > s, then 2A' < 1, so Ht(CA) = 0. Moreover, H*(Cy) < %t . To complete
our proof, we claim that H°(C,) > 5% > 0.

Let Z be a countable cover of C, by open intervals. Since C, is compact, we may
assume 7 is finite. Let ¢ > 0. The set C) is meager, so by enlarging the diameter of each

I € 7 by at most \’/ diam(I) + wz:gz — diam(I), we obtain a new covering Z* such that
the end points do not belong to C, , and

ZIGI os(I) +e> Zlezg os(I)

Hence, for some § > 0, the end points of all I € Z¢ are at least at a distance of § from
the set C, . There exists n € IN, such that A¥ < § for all k > n. Then any Iy ; withk > n
is contained in some I € Z*. Let I € Z¢ and fix £ > n such that I;, C I for some p. Let
P = {1<p<2l, CI}. Now let k be minimal, such that there is some g for which
I, C 1. SetQ {1<g <2, C1}.

We claim that #Q < 2. Indeed, any interval containing intervals Iy ; and I; ; contains

37
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all Iy, , i < m < j. Moreover, an interval containing Ix»; 1 and Iy »; also contains ;1.
Thus, if I would contain at least three L, then it would contain some I;_; ;, contrary to
the minimality of k. Moreover, for all p € P, there exists some g such that g — 1, q or
g+ 1belongs to Q and I, C I, (by the same argument).

Hence,

205(1) > quQ QS<Ik,j) > Zpep 0s(Iri) —20s(Ik1) = Zpep 0s(Lri) —20s(I) .

This implies

1
Yoeros(D+ez ) ros(l) > i Y ez Zlm,pcl Qs (Inp) > 1 Y 0s(Ip) = 25+2

Since ¢ > 0 and Z were arbitrary, we find H*(C,) > 2‘5"—@ asclaimed. — O

Remark 2.2.10. The above theorems are a mixture of [Fed69] and [EG92]. The proof of
proposition 2.2.9 follows [Mat95, 4.11], although the proof given there is erroneous.

2.3 Densities

Definition 2.3.1. Let ;2 be a measure on X and 0 < s < oo. Define the upper and lower
s-density of p at x € X by

1 (B(x,¢))

wgés

H(B(x,e)

and O.s(y,x) = liminf, o4 e
S

O7(u,x) = limsup,_,;,
Whenever these numbers agree in [0, o], define the s-dimensional density of u at x, de-
noted O; (i, x), to be their common value. If u = H° L A, we write @} (A, x), etc.

2.3.2. Before stating our main theorem on densities, we make the following simple ob-
servation: A point x € X is not isolated if and only if there exists a sequence r, — 0+
such that diam(B(x, 7)) > ri forallk € N.

Indeed, if x € X is isolated, then there exists R > 0 such that B(x,R) = x. Then
B(x,r) = x forall 0 < r < R, so there exists no such sequence. Conversely, assume that
x € X isnot isolated. Then there are x; € B(x, 1) \ x. Let rx = d(x, x,) . Then ry has the
required properties.

Theorem 2.3.3. Let ;1 be a measure, B C X,and 0 < & < co. Then
O(u,x) <aforall xe B = pulL B<L2a-H'L B.

If, moreover, X is separable, u is finite and Borel regular, and B does not contain an
isolated point of X, then

Of(p,x) >aforall xe B = wulL B>wa-H L B.
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Remark 2.3.4. The point of the theorem is that we do not need any additional assump-
tions on the separable metric space X, whereas in lemma 1.9.2, we needed o-directional
limitation.

Proof of theorem 2.3.3. Let ©}(y,1) < a on B. Let A C X. There exists a countable
cover G of AN B such that

¥GegIxc € GNANB, 0 < re=diam(G) < o, and H*(ANB) +e> Y . _;0:(G)

Then

(u L B)( Zceg J(ANG) ZcegV(B XG,1G))
<“'Zcegwsfc=2a-ZG€gqs G) < 2a- (HS(ANB)+e),

proving the first assertion.
Let ©f(y,u) > a on B, and make the additional assumptions. Choose 1 < T < o0
and let 7 = 2(2 4 27) . Then, for x € B, and arbitrarily small r > 0,

diam(B(x, (1+27)r)) < 2(1+27)r <5 -r <1 -diam(B(x,7)) .

Let A C X. We may assume that A is Borel, because ; and H* L B are Borel regular. By
theorem 1.1.9 (i), there exists an open U D A N B such that u(U) < u(ANB) + 5. Fix
0 >0,and let F besetofall B(x,r),x € ANB,r < % , subject to the conditions

B(x,(1+2t)r) C U, diam(B(x,r)) >r, and u(B(x,7)) > - ws-1° > 0.
By assumption, F is a closed fine cover of AN B, and
5(F) <n-6(F) forall F€F where &(F)= diam(F).
Thus, by corollary 1.7.8, there exists a disjoint G C F, such that
(ANB)\|JH cJ{G|GeG\H} forallfinite HCG.

We have u(U) < oo and p(G) > 0 forall G € G. Hence, G is countable, and we have
Yceg #(G) < p(U) < co. Choose H C G finite such that Y gcg\y #(G) < 3 - Then

w-H3(ANB) <Y oy 05(G) + ZGGQ\H xos(G)

1 S
S EZGGH H(G) + Y gy Man(G) < p(U) + 5 < u(ANB) +e

N m

proving the assertion. O

Corollary 2.3.5. Assume that X is separable, and contains no isolated points. If u is Borel
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regular,and A € M(u), u(A) < oo, then

Oi(ul Ax)=0 forH’ae.xecX\A.

Proof. By proposition 1.1.7, L A is a finite Borel measure. Forany n > 1, let

B, = (X\A)m{@):(y,u) > %}

Assume H*(B,) > 0. Since yu(A) < oo, there exists by lemma 1.1.8 a closed C D B, such
that (A \ C) < 1.H%(B,). But theorem 2.3.3 gives

|-
S|

ANC) = (p L A)X\C) = = - H(X\C) = —-H(By) ,

a contradiction! Thus H*(B,) = 0, and taking unions, the claim follows. —— [

Corollary 2.3.6. Assume that X is separable, and contains no isolated points. Whenever
H°(A) < oo, then
O (A,x) <1 forH’ae. xeX.

Proof. Since H® is Borel regular, we may assume that A is Borel. For n > 1, define
B, = {®:(A,u) > 1+ 1} Since H® L AisBorel regular and finite, theorem 2.3.3 gives

> H(Ba) = (L AYB) > (1) - (B,

so H*(B,) = 0. Taking intersections, the assertion follows. O

Remark 2.3.7. The proof of the density results is from [Fed69]. The proof in [Mat95,
th. 6.2.] is erroneous; it assumes that H* be a Radon measure, which is usually false.

24 Isodiametric Inequality and Uniqueness of Measure on IR”

It is an important and striking fact that for any norm ||u|| on R"”, the Hausdorff mea-
sure HWU” equals the Euclidean Lebesgue measure £" up to a fixed constant. The main
ingredient in its proof, the isodiametric inequality, states that the ||||-unit ball is the set
of maximal Lebesgue measure among the sets of ||u||-diameter 2. To prove this, we first
establish the Brunn-Minkowski inequality.

Theorem (Brunn-Minkowski-Lusternik) 2.4.1. Let @ # A,B C R" be L" measurable,
and t € [0,1]. If tA + (1 — t)B is L" measurable, then

1/n

L'(tA+(1—t)B) " =L (A" + (1 - t)L"(B)V".
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Proof. We shall assume, as we may w.l.o.g., that0 <t <1.

First, we shall prove the statement for boxes whose sides are parallel to the coordi-
nate hyperplanes. By Fubini’s theorem 1.6.2, for any box A of side lengths 0 < x; < o0,
we have £"(B) = [[.xj. f A = a+][;L1[0,x] and B = b +[[.4[0,y;], then
A+B=a+b +H7:1[0,xj +yj],s0 L"(A+B) = [Tisq (x; +yj)-

Recall that the arithmetic-geometric mean inequality states

1
Vay-a, < = (a4 +a,) forall a;>0.

BN

It gives

tL (A" 4 (1 — )L (B)L/" n tx; Un o (T—t)y; \Un
= (= -ny) <H”>

Lr(tA+ (1—1t)B) i

1 tx]' 1 2
gf. e — — ——
n ;txj—i—(l—t)j n ]Z%t (1—t)y

so the statement is correct for boxes.

We now prove the statement for finite unions of boxes. So, let A and B be finite
unions of boxes mutually not intersecting in their interiors, such that that the total num-
ber is at most k > 2, and assume the inequality has been established for unions whose
total number of boxes is < k.

By possibly exchanging A and B, w.l.o.g. there exists an affine hyperplane H parallel
to the coordinate hyperplanes, such that A* = H* N A are unions of fewer boxes than
A is, where H™ are the closed half spaces defined by H. (Otherwise, k < 2, which we
have excluded.) 1 For B* = G* N B, where G is some translate of H, we have

L(AF) _ LM(BF) ,
Lr(A) — Lr(B)

1 The proof of the existence of the hyperplane H goes as follows. Observe that if P = a + H7 110, x/]
and Q =b+ H” 110,y;] are two boxes, then for Q to not to be on the opposite side as P of the hyperplane
{pr = a;}, say, amounts to the inequality x; > a;. For Q not to be on the opposite side of each of the 21
hyperplanes spanned by the top-dimensional faces of P amounts to 2n inequalities, which then gives an
n-dimensional intersection P N Q. If P and Q only intersect in their boundaries if they are distinct, we find
P = Q. Thus, w.l.o.g., let A be the union of at least two boxes. Then there exists an affine hyperplane H
parallel to one of the coordinate hyperplanes, such that at least two of the boxes are completely on opposite
sides of H. Every other box is either dissected by H, in which case it contributes to both At and A, or
lies on one side of H, in which case it contributes only to A* or only to A~ . Since at least one box only
contributes to either side, the total number of boxes in A* is strictly less than in A.

2Say H = {pr; = 0} . Consider B;” = BN {pr; < t}. Then

f(t)=L"(Bf) = /_:o LY (BN {pr; = t})dLl(t)

(Fubini) is continuous by Lebesgue’s theorem. The intermediate value theorem gives one equation, and the
other follows by additivity of £" , because AT N A~ and BT NB~ are £" negligible.
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Then B* are unions of at most as many boxes as B is. Hence, A¢ U B¢ are unions of < k
boxes for ¢2 = 1. This implies

L'(tA+(1—t)B) > Z LM(tA*+ (1 —t)B%) > E (tﬁn(As)l/” +(1- t)£n<BS)1/n)"

2=1 2=1
1—t)L"(B)Y/nyn
(1—#)L"(B

= (1+ )1/")" LAY = (LAY 4 (1— LM (B)Y",

tLn (A)l/

which proves the assertion for finite unions of boxes.
Next, assume that A, B be compact. Let Qj and ’Hj be families of boxes mutually
intersecting only along their boundaries, such that

ACA]-HCA]-:UQJ- and BCBj+1CBj:UHj.
Then

tLM (A" (1) LM(B)Y" < limsupj(tﬁn(Aj)l/" +(1—t)L"(B)M")
< limsup; £ (tA; + (1 - t)Bj)l/n :
We may assume that A; C A% and B; C B!/?/, where C¢ = {c € R"|dist(c,C) < ¢}.
If G is any cover of C, then {G* | G € G} is a cover of C, so L"(C) < (1+2¢)"L"(C).
We find tA;j+ (1 —t)B; C (tA+ (1 — t)B)l/zj , and hence

limsup; £"(tA; + (1 - t)B;) < limsup; (1 + %)” “L"(tA+ (1—1t)B),

which proves the assertion for compact A, B.

Finally, let A, B, and tA + (1 — t)B be L" measurable. Of course, we may assume
L"(tA+ (1 —1)B) < co. By theorem 1.1.9 (iii), let A\ U2y A4; and B\ U}%, B; be L"
negligible, where A; C A;,1 and B; C Bj 1 are compacts.

Then C; = tAj+ (1 —t)B; C Cj41, and (tA + (1 —t)B) \ U2, C; is L" negligible. By
proposition 1.1.3, we have

L (tA + (1 — t)B)l/n = limk ,Cn(C]) > limk t,Cn(A]')l/n + hm](l — t)ﬁn(B]')l/n
= tL"( AV + (1 —-t)L"(B)Y",

finally proving the theorem. U
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Isodiametric Inequality (Bieberbach-Urysohn-Mel'nikov) 2.4.2. Let ||| be any norm
onR", A C R",and 2r = diam(A), taken w.r.t. ||u|| . Then

£A) < LYlull <}

Proof. We may assume r < o0 and A closed (L"(A) < £L"(A) and diam(A) = diam(A)).
So A is compact, and B = 1 (A — A) gives diam(B) < diam(A) . Moreover, theorem 2.4.1
shows

L'B) > (3-LMA)V" 5 LN (=AM =L"(A).

But since B = —B, we find for any x € B that 2||x|| = ||x — (—x)|| < diam B < 2r,so B
is contained the ball of radius r. We conclude

L£M(A) < L'(B) < LY|[ull <7},

which was our claim. O
Theorem 2.4.3. Let ||| be a norm on R" and ‘H" = H H the n-dimensional Hausdorff
measure w.r.t. this norm. Then H" = zrri— - £, in particular, H"{||u]| < 1} = w,

is independent of the norm.

Proof. Let B(x,r) = {||u — x|| < r} be the ball w.r.t. |||

Theorem 2.2.2 implies that for all x € R” , A > 0, H"(B(x,r)) = A" - H"(B(0,1)) . By
theorem 2.2.4 (iv), H" is locally finite. Thus, for C = Hn(( ((8 11)))) ,wehave H" = C- L", by
corollary 1.9.6.

The isodiametric inequality (theorem 2.4.2) implies that for any countable cover G of
B(0,1) such that diam(G) < é forall G € G,

E”( diam(G)" - wy
[’ Zceg Zceg omn /

so wy, < HE(B(0,1)) < H"(B(0,1)) . In particular, H" # 0.
Then corollary 2.3.6 gives

1(B(x,¢))

T <w,; forH"ae xcR".
.

H"(B(x,1)) = wy - limsup,_,,,

But the left hand side is independent of x, so H"(B(0,1)) < wy, because H" # 0. Thus,
H" (B(O, 1)) = wy , proving the theorem. O

Remark 2.4.4. Using the area formula (see section 4), one can prove that w;, is the volume
of the Euclidean unit ball, but we shall not use this result at this point.

The isodiametric inequality also implies the following generalisation of theorem 2.2.2.

Theorem 2.4.5. Letm < s < nand f : R" — R™ be Lipschitz w.r.t. some arbitrary norms.
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Then
LMol €1} - wsem

Ws

[ an ) ey < 22U H(A)

for all A € B(IR") and the Hausdorff measures H*, H*~" associated to the given norm.

Proof. For any k > 1, there exist countable covers G of A, such that

=

Yoog 0:(C) < HE(A) +
Ify,y2 € f(G), G € Gy, then thereexist x; € G, f(x;) =y;,j=1,2. Thus,
ly1 = y2ll < Lip(f) - [[x1 — x2|| < Lip(f) - diam G .

We obtain diam f(G) < Lip(f) - diam G, and thus

L™y,
Wm

L"(f(G)) < -om(G), where L=Lip(f) and a, =L"{||u] <1},

by the isodiametric inequality (theorem 2.4.2). Fatou’s lemma (theorem 1.5.5) and mono-
tone convergence (corollary 1.5.6) imply

[reman i w) acn )

11m1nfk/H1/k AN (y)) AL (y) ghmmfk/zceg 0c (GO FL(y)) L™ (y)
L

< liminf, Zcegk 0s-m(G) - L"(f(G)) < o ™ lim infy Zcegk<95—m -om)(G)
m
L™ oy sy .. . L™ &y Ws_m
< T - lim inf, ZGegk 0s(G) < ST HE(A),
proving the assertion. O

Corollary 2.4.6. Let ||Li|| be a seminorm on R” . There exists L > 0, such that fore > 0,

2L 1—

i n > n—1 _
o el <1} > S o) = 1),

for the Hausdorff measures H", H" ! to some norm.
Proof. Consider the L-Lipschitz map ||u|| : R* — R. Then £!([—1,1]) = 2, and theo-

rem 2.4.5 implies

2L - Wy—1
Wn

! 1
Al <13 > [ WYl = () = 1ol = 13- [ ar,

by theorem 2.2.4 (iii). Now, fos ldr = % by standard arguments (Lebesgue’s theorem

and Lipschitz continuity of 2 id"). O
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Remark 2.4.7. The constants in the above corollary can be removed to give an equality.
This can be proved by using the area formula, but we shall use the corollary in the above
form in the area formula’s proof.

The proof of the Brunn-Minkowski and isodiametric inequalities is essentially from
the book [BZ88]. The proof of theorem 2.4.3 is from [Kir94, lem. 6]. Theorem 2.4.5 is
[Mat95, th. 7.7].
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3 Lipschitz Extendibility and Differentiability

3.1 Extension of Lipschitz Functions

The most significant Lipschitz extendibility result is the Kirszbraun extension theorem
on the extendibility of functions defined on subsets of finite dimensional Euclidean
spaces. It was extended to infinite dimensions by Valentine. We give short proof based
on the Fenchel duality theorem, as follows.

Theorem (Kirszbraun-Valentine) 3.1.1. Let H;, j = 1,2, be Hilbert spaces, @ # D C
Hi,and f : D — 'Hj be Lipschitz. There exists a Lipschitz extension g : H; — H; such

that Lip(g) = Lip(f).

Proof. Assume that the theorem be true for 1 = H,. Then we may consider the func-
tionh : D®&Hy — H1®Hz : (E,17) — (0, f(§)) to extend it to the general situation.
Moreover, it suffices to prove the assertion for Lip(f) = 1. Indeed, the statement is
trivial for Lip(f) = 0, and we may consider Lip(f)~! - f for Lip(f) > 0 O

The remainder of the proof is divided into a series of lemmata. To that end, let a subset
@ # D C 'H ="Hy = Hz and a 1-Lipschitz map f : D — 'H be given, such that there
exists no true 1-Lipschitz extension of f .

Moreover, define x : H? —]—o0, c0] by
X&) =supgep(ln = FQOIP = 11E = 2]%) -

Lemma 3.1.2. We have x > 0 and {x = 0} = Gr(f), the graph of f.
Proof.Let{,n € H.1f§ € D, then

X(@om) = lln = FOIP =g = 2lI> =l = f@)1* >

If ¢ D, then any extension of f to D U ¢ is not 1-Lipschitz. In particular, there exists
¢ € D, such that [l — f(2)[|* > [|¢ — Z||* . Hence, x(¢, ) > 0.

This proves the first assertion and that {x = 0} C D x H. Thus, x(¢, ) = 0 implies,
by the above calculation, that

0=x(&n)=lln—fE@)°=>

o (¢,n) € Gr(f). Conversely, for 7 = f(¢), we have, forall{ € D,

lr = FOI? = [If@) = FOI < g =2l

so x(¢,n) < 0. Since x(&,7), the assertion follows. O
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Lemma 3.1.3. Let ¢ : H? —]—o00, 0] be defined by

)= -x(E+nd—n)+(G:n) forall neH.

N

Then the following holds.
(i). We have, forall ¢, 7 € H,

4-9(Z,1) = supep (ILF@QIF = IEI>+2-(§: 0= f(0)) +2-(1: T+ f(D))) -

(ii). Forall{ € D,

Q) E2JON g - p .

4'(”( T2

(iii). @ is a proper l.s.c. convex function, and for the Fenchel dual, we have ¢* > ¢.

Proof of (i). For all {, we have

1E—n—F@I*—Ig+n -2
= —4(&:m) =20 —n: f@Q)+2@E+7: )+ QI - llgl?
= —4(Z:m)+2(8: 2= fQ)+201: T+ FO)+IF@NI* = NI,

and hence our claim follows.
Proof of (ii). We have

c+§<5>,€—é‘<€>) = x(L )+ C+ Q) : T~ f(2)

= (C+f(0): = Q) =lZIP = IF @I

49

Proof of (iii). The lower semicontinuity is clear from (1). The properness follows, since
@ > —oo everywhere is obvious, and ¢ attains finite values by (2). Its convexity also
follows from (1), since this exhibits ¢ as an upper envelope of affine functions.

Moreover, forall { € D,

(@+s@Ne - F@) neg) - EHE, 2SO,

N =

" (1,8) =

and the supremum of the right hand side is ¢(¢, 7) . O

Proof of theorem 3.1.1 (continued). Let f : D — 'H be as before. We wish to show that
D = M. First, we establish 0 € D. To that end, we note that h(¢,17) = 1 - [|¢ ® 7|
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equals its own Fenchel dual. Moreover,

4- (&) +h@Emn) =x@E+nc—n)+4-C:n)+2-(1E1*+ In11%)
=x@+n&—n)+2-E+7|>. (%)

This implies
@ (1,8) +h(n,8) = ¢(&n) +h(Gn) >0,

by lemma 3.1.3 (iii).

Then Fenchel’s theorem gives (¢,77) € H x H such that ¢(¢, ) +h(—¢, —n) < 0.
From the equation (x), we find { = —# and x(0,§ —#n) = 0. This implies, by lem-
ma 3.1.2, that (0,¢ — y) € Gr(f), in particular, 0 € D.

For any ¢ € H, we may now consider the function f : D — ¢ — H, defined by
fe(n) = f(n+¢). Then f; satisfies all the conditions imposed on f, and we deduce
0eD—-¢,so0 € D.Thus, D ="H.

Let now f : D — 'H be any 1-Lipschitz map, D # @ . The set of all pairs (E, g)
where D C E C H and g : E — H is a 1-Lipschitz extension of f. This set is ordered in
the natural fashion, and thus contains a maximal chain C by the Hausdorff maximality
principle.

Define F to be the union of all E where (E,g) € C,and h : F — H by h(§) = g(&) if
¢ € Eand (E,g) € C. his a well-defined 1-Lipschitz map because C is a chain. Clearly,
h does not have a true extension to a 1-Lipschitz map. Hence, we conclude that F = 'H

and / is the desired extension of f . H

Remark 3.1.4. Our presentation of the proof of the Kirszbraun-Valentine theorem fol-
lows [RS05] closely.

A minor but nonetheless useful Lipschitz extendibility result is as follows.

Proposition 3.1.5. Let (X, d) be a metric space, @ # D C X, and f : D — {* be Lip-
schitz. Then

g(x); = infyep (f(y); + Lip(f;) - d(x,y)) forall x€ X,j €N

defines a Lipschitz extension g : X — (% of f such that Lip(g) = Lip(f).

Proof. Clearly, it suffices to argue for each component separately, so we reduce to the
case that f takes values in R. Let x1,x, € X, and € > 0. There exists y € D such that

§(x2) +& = f(y) +Lip(f) - d(x2,y) . Thus

g(x1) —g(x2) <e+ f(y) +Lip(f) - d(x1,y) — (f(y) +Lip(f) - d(x2,y))
< e+ Lip(f) -d(x1,x2) .

Since the right hand side is invariant under permutation of x; and x;, it follows that g
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is Lip( f)-Lipschitz. Since g clearly extends f, we have Lip(g¢) = Lip(f). ——— O

3.1.6. We point out that the previous result furnishes extensions (with possibly larger
codomain) for any Lipschitz function with values in a separable metric space, since any
such space can be embedded into ¢~ .

Indeed, let (X, d) be metric and (xx) a dense sequence. We may assume d be bounded
(otherwise consider, e.g., 1%1 ). Define ¢ : X — (* by ¢(x); = d(x,x;) — d(xo0,xj) . Then

|d(x, xj) —d(xo,x;) — (d(y,xj) —d(x0,x))| = |d(x,x}) —d(y,x;)| <d(x,y) .
On the other hand, given ¢ > 0, there is j € N such that d(x, x]-) < 5,50

>d(x,y) —¢,

N ™

lp(x) = 9(W)llew = |d(x,x}) — d(y, x)| > d(y, x}) -

and thus ¢ is indeed an isometry.

3.1.7. We have seen above that any separable metric space can be embedded in the unit
ball of some dual Banach space. In this context we also mention that the converse can
be easily established as follows. Let X be a separable Banach space. Choose a dense
sequence (x;) in B(X) . Then

[ee]

do(p,v) = Z% |(x:p—v)| forall p,veX*
k=0

defines a metric d, on X which induces the o(X*, X)-topology on bounded subsets.

3.2 Differentiability of Functions of Bounded Variation

On our way to substantial multivariate differentiability results for Lipschitz functions,
we need first to consider the one-variable case. The fundamental result in this domain
is the following version of the Lebesgue differentiation theorem.

Theorem (Lebesgue) 3.2.1. Leta,b € R,a < b, and f : [4,b] — R be increasing. Then f
is £! a.e. differentiable, the differential ' : [a,b] — R is £! summable, and

b
[ ract <) - fla).
a
Proof. Define a finite measure y on R by

u(A) =inf{f(d) — f(c) | An[a,b] C [c,d] C [a,b]} forall ACR.

It is obvious, by Caratheodory’s criterion theorem 1.1.10, that y is a Borel measure. By
definition, for all A C R, ¢ > 0, there exists an interval A C [c,d] C [a,b] such that
#([c,d]) < u(A) + ¢. Hence, y is Borel regular.
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By proposition 1.9.3, D1(x) exists and is finite for £! a.e. x € R. Hence, for
Llae x € [ab],

flxrte) — f(x) (B
€ € € LY (B(x,¢))

converges to D 1(x) . Denote

flx+e) = f(x) fx+e) = fx)

D" f(x) = limsup,_, ; , Dif(x) =liminf,_o ; ,

D™ f(x) =limsup, o, flx) - {:(x —¢) , D_f(x) =liminf,_,o+ fx) - f(x —¢) )

If the left hand side of the above equation converges and one of its summands converges,
the other also converges. This argument shows that
—00 < DTf(x) < Dpip(x) < D_f(x) < oo for Llae x € [a,b].
The same reasoning, applied to —f(a + b — 1), gives D™ f < D f L! a.e. Hence,

—0 < DT f<Duu<D_f<D f<D,f<D"f Llae

Therefore, f is £ a.e. differentiable, and f' = D 1u L! a.e., so theorem 1.9.5 gives

b b
| Fract = [ Dapact <p(lab)) = £0) - £(0),

Finally, f’ is £! measurable by proposition 1.9.3, and thus £! summable. —— [
Definition 3.2.2. A function f : [2,b] — R is said to have bounded variation if its total

variation

m—1
Var(f) = supa:x0<--~<xm:b ZO }f(xj+1) - f(x]>‘
j=

is finite. Clearly, any Lipschitz function f : [a,b] — R is of bounded variation with
Var(f) < Lip(f). (More generally, any absolutely continuous function is of bounded
variation.) If f is defined on some (non-compact) interval, it is said to locally have bounded
variation if f | [a, b] is of bounded variation for any [a,b] C I.

The positive and negative variation are defined by

m—1
+
Vari (f) = supa=x0<---<xm=b Z (f(xj+1) _f(xf))
j=0
where we recall x* = max(x,0) and x~ = —min(x,0) = max(—x,0) for all x € R.

Observe that x* > 0and x = x* — x~.

Proposition 3.2.3. Let 2 € I C R be an interval, f : I — R have locally bounded
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variation, and define, forall x € I,

- (x) = Var®(f | [a,x]) a<x,
—Var® (f | [x,a]) x<a.

Then +* are increasing, f = f(a) +t" —t~, and whenever f = s — s~ where s* are

increasing, then so are st —t+,

Proof. Since f has bounded variation, t* are well-defined as real-valued functions. Let
a < x <y.Wehave

Var® (f | [a,y]) — Var® (f | [a,x]) = Var™ (f | [x,y]) =0,

since we might as well take weakly increasing partitions in the definitions of the pos-
itive and negative variation. Hence, t=(y) — t*(a) > 0. By applying the permutation
(a,x,y) — (x,y,a), we find that this also true in case x < y < a. Thecase x < a <y
being trivial, t* are increasing.
_ +
Leta = xo < -+ < x5, = x, and denote L+ = ]7"201 (f(xj41) — f(xj)) " . Then

fex)=fla) =) (f(xjs1) = f(x))) =27 —Z7 € [Z" —t (x),t"(x) —Z7] .

j=0

Noting t*(x) = supE* and —t~ (x) = inf(—X "), the supremum/infimum being taken
over all partitions of [a,x], we find f(x) — f(a) = t7(x) — t(x), as required. Exchang-
ing x and a, we find that the equation is valid on all of I.

Finally, let f = s — s~ the difference of increasing functions. Fix x < yin I. Then

WV
-
—~

m
N~——
+
T
—~
=
N~—
+
chl
—~
=
S~—
I
=
=
S~—
|
-
+
—~
=
S~—
+
rJ)I
~
=
S~—
I
V2]
Jr
—~
=
S—
|
-
+
—~
=
S~—

sost —t* isincreasing. Replacing f by —f(a+b— i), we find that s~ — ¢~ is increasing,
too. U

Remark 3.2.4. The above decomposition is often called the minimal decomposition of a
function of locally bounded variation.

Corollary 3.2.5. Let f : I — R be locally of bounded variation. Then f is £ a.e. differen-
tiable, and the derivative f’ is locally £! integrable. In particular, any locally Lipschitz
function is £! a.e. differentiable.

Proof. This is immediate from theorem 3.2.1, proposition 3.2.3, and the o-compactness
of R. O

Remark 3.2.6. Our presentation follows [EIs99]. See, e.g., [SIm96] for an alternative ap-
proach.
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3.3 Rademacher’s Theorem, Weak and Metric Differentiability

The basic theorem on differentiability of is the following one, due to Rademacher. The
Kirszbraun-Valentine extension theorem allows its application to any Lipschitz map de-
fined on an arbitrary subset of R™ .

Theorem (Rademacher) 3.3.1. If f : R” — IR" is Lipschitz, it is L™ a.e. differentiable.

Proof. Of course, if suffices to consider the case n = 1. Fix e € §"=1_ The set N,
of all x € R™ where t — f(x +t-e) is not differentiable, is a Borel set. By corol-
lary 3.2.5, H (N N (x+ Re) ) = Q0 forall x € R™. Thus, Fubini’s theorem 1.6.2 allows us
to conclude that £L"(N,) = 0.

Define the gradient Vf(x) = (91f(x),...,0mf(x)) whenever it exists. As we have
seen, V f(x) exists for L™ a.e. x € R™. Moreover, d.f(x) exists for L a.e. x € R™. Let
NS CEOO)(IR’”) .Foranye >0,

fx+e-e)—f(x) m( —plx—e-e) .,
/ : Cp(x)dL /f . AL (x) .

Since |¢| < ||@||eo - Lsupp ¢ and f is Lipschitz, we may apply Lebesgue’s dominated con-
vergence theorem 1.5.7 to the effect that

/aef x)dL™ (x /f eqp(x) AL (x) = e]/f 9, (x) dL™ ()
_ze]/a]f x)dL" (x) = /(e:Vf(x))go(x)dx.

We conclude that 9. (x) = (e: Vf(x)) for L™ a.e. x, forany e € " 1.

Fix a dense countable subset E C §"~1. Then £" is concentrated on the intersection
A = Neee{0:f = (e: Vf(x))} . We claim that f is differentiable at any x € A. To that
end, fix x € A and define

Ae(e) = f(x+s-:) —fx) _ (e:Vf(x)) forall e>0,ecS™ !,

Suffices to prove lim._4 A; = 0 uniformly. Set M = 2max(Lip(f), ||V f(x)|/,1), and
observe

|Ac(e) = Ac(e)| < et [ fx+ee) — flx+ee)| + V()] - le—€ < M- [le—¢]

foralle,e’ € 8" 1, e > 0.

Since $" ! is compact, there exists a finite subset E' C E such that dist(e, E') < 5%
for all e € S~ !. Moreover, lim, .o, A:(e) = 0 for all e € E’. Hence, there is § > 0 such
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that |A(e)| < §foralle € E'and0 < e < é.Fore e §" 1,0 < e <5, wehave

. , €
|Ae(e)] < mingep [|Ac(e) — Ac(e')| +|Ac(e)|] < mingep M- |le —e'|| + 5 SE

so lim, 0+ A = 0 uniformly, and f is differentiable at x . U

Definition 3.3.2. Let (X, ||u||) be a normed space, (Y, d) a metric space, U C X an open
subset, and f : U — Y. If x € U and there exists a continuous seminorm p : X — R
such that

- [d(f(y), f(x)) —ply —x)] =0,

then f said to be metrically differentiable at x. We point out that the continuity of p is

automatic if X is finite-dimensional.

Lemma3.33.If f : U — Y and x € U, then there is at most one seminorm p as in defi-
nition 3.3.2. If it exists, we denote it by | f'|(x) . If f is metrically differentiable at x, then

it is continuous at x .

Proof. Let p : X — R fulfill the condition. Then fixy € X. Foralle > 0,

) = Iyl FEE =,
and therefore
p(y) = lim,_, EF iw,f(x)) |
Thus follows the uniqueness. The statement about continuity is trivial. ——— 0O

Metric differentiability is closely related to the notion of weak differentiability.

Definition 3.3.4. Let (X, ||u||) be a normed space, Y = E* a dual Banach space, U C X
an open subset, and f : U — Y. If x € U and there exists a continuous linear map
L : X — Y, such that

. 1 .

limy, T [f(y) = f(x) = Lly—x)] =0 in o(Y,E),

then f is said to be weak* differentiable at x . The continuity of L is automatic if X is finite-
dimensional. Moreover, as above, L is unique if it exists, in which case we denote it by

fl(x) . If f is weakly differentiable at x, then f : U — Y, is continuous at x .

3.3.5.Let f : U — Y = E* be weakly and metrically differentiable at x € U, where we
the metric d induced by the dual norm. We claim that

Il fo(x)ol < |f|(x)v forall ve X.
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Indeed, since ||y|| = sup,[(e:y)| forally € Y, ||u] is o (Y, E)-Ls.c. Thus

f(x+ev) - flx)

||x +ev — x||

1f (x + €v) — f(x) ]

€

= [f'l(x)o

ol = [time—os | <timinf, o,
forallv € X, ||v|| = 1. The positive homogeneity of both sides of the inequality ensues

our statement.

The following theorem shows that this inequality is a.e. an equality.

Theorem (Ambrosio-Kirchheim) 3.3.6. Let E be a separable Banach space, Y = E*, and
f :R™ — Y be Lipschitz. Then for L™ a.e. x € R™, f is weakly and metrically differen-
tiable (w.r.t. the dual norm), and || f/(x)|| = |f'|(x) .

Proof. Let D C E be a dense countable-dimensional Q-subspace. By theorem 3.3.1, the
set N C R™ of all x € R such that (¢ : f) is not differentiable at x for some ¢ € D is L™
negligible. Let A = R™ \ N and note

(G f(x +ev) — f(x))]

€

(G f) (x)v] = lime o4

< Lip(f) - Igll - llv]l,

soR"xD — R: (v,&) — (¢ : f) (x)vis uniformly continuous for all x € A. Thus,
there exists a continuous linear map V f(x) : R”™ — Y so that

(E:Vf(x)o)=(Z: f)(x)v forall veR",ZeD.

By exactly the same argument as in the proof of Rademacher’s theorem, f is weakly
differentiable at every x € A, and Vf(x) = f/(x). Moreover, as above, we have

||f(x—|—£z;)—f(x)|| forall ve R",x € A.

I fo(x)o]| < liminf, o
It is clear that

(¢: Vf(x)v) = limeo4 € f(x+§v) L orait x ¢ A,veR", feD.

Define Vf =0onN.Letx€ A, v € R",e € Eand ¢ € D. Then

[HE e e ) = flr 7o)

0 €
= [T e [ s royae] — @ fler ) - f),

as follows immediately from the continuity of f. Moreover, the integrand on the left

hand side has an integrable bound (f is Lipschitz), so we may apply Lebesgue’s domi-
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nated convergence theorem 1.5.7 to achieve
t
(@ flxtto) = () = [ (& Vf(x+T0)0)dr,

since x + v € A fora.e. T € [0,¢]. In particular,

If (x +to) = fF(2)]]
t

t
limsup,_, < limyos / IV f(x + to)0|| dt
0

By the Lebesgue-Besicovich differentiation theorem 1.9.9, shrinking A, we may assume
the right hand side is |V f(x)v|| = ||f/(x)v|| , whence our claim. O

This result furnishes us with the following striking extension of Rademacher’s theorem.

Theorem (Rademacher-Ambrosio-Kirchheim) 3.3.7. Let f : R" — X be Lipschitz where
(X,d) is metric. Then f is £" a.e. metrically differentiable.

Proof. Since f(R") is separable, we may assume that this is the case with X, too. Thus
X may be considered as a subspace of £~ = (¢!)*. Now, theorem 3.3.6 applies. — O

In fact, we can give a version of the mean value theorem. To that end, we give the
following definition.

Definition 3.3.8. Let X, Y be metric spaces and f : X — Y. An continuous increasing
function w : [0, oo[— [0, co[ such that w(0) =0, w(x +y) < w(x) +w(y) forallx,y >0,
and

d(f(x),f(y)) S w(d(x,y)) forall x,y€X

is called a (global) modulus of continuity for f . Then f has a modulus of continuity if and
only if it is continuous.

Moreover, if E is normed, then on the set of seminorms on E , we introduce the metric
5(p,q) = supHngl\p(x) —q(x)| for all seminorms p,qonE .

We note that d(p, q) < eis equivalent to |p(x) — q(x)| < ¢[|x|| forall x € E.

Metric Mean Value Inequality (Kirchheim, Ambrosio-Kirchheim) 3.3.9. For any Lip-
schitz f : R" — X, (X, d) metric,

d(f(y), f(z)) = 1)y —2)

=0 forL"ae. xceR".
ly — x| + [[x — 2]

limyzy2 0

Moreover, there exists a countable compact family K such that |f'| | K is continuous for
each K € IC, and moduli of continuity for |f’| ‘ K, wg , such that

[d(f(y). f(2) = If 1(2)(y - 2)| < wk(lly —zll) -y —z]| forall ye R", ze K€ K.
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Proof. By theorem 3.3.7, for L" a.e. x € R", |f'|(x) exists. For each y € R", |f'|(1)(y)
is £" measurable. Since the unit ball of R" is separable, it follows easily that |f’| is £"
measurable. By Lusin’s theorem 1.4.1, there exist a countable compact £" almost cover
K of R", and such that |f’| | K is continuous for all K € K. Moreover, by Egorov’s theo-
rem 1.4.4, we may assume lim, o+ 2 - d(f(x), f(x +ry)) = |f'|(x)y uniformly in x € K
andy € B(0,1).

By corollary 1.9.10, we need only prove the assertion at points x of £" density 1 for
some K € K. Fix a density point x € K and € > 0. Then there exists § > 0 such that

B(x+rv,re)NK# @ forall |jv] <e !, 0<r<s. (%)

By the uniformity of the above convergence, we may assume

d(f(y+r0), f(y))

r

2
—f'l(y)v| < & forallyEK,veB(O,l),0<r<£. (%)

Since | f’| ‘ K is continuous, we may also assume

S(If'1(x), 1f'|(y)) <& forall y € K, [lx—yll <o(e+7) - ()
Foru,v € B(0,1),u # v, there exists w € K, [|[w — (x + rv)|| < er < 5(e+ 1) . Thus,

‘1 ~d(f(x+ru), f(x +70)) — [f'|(x)(u—0)
- 'd(f(w-l—r(u —0)), f(w))

S
r

— 1£1(x) (u — v)
(e ), F (= o)) + d(F(), fx +20)))

u—o

o]’ and hence,

now, we set z = Tuol

d(f(w +rllu —v||z), f(w)) :
< |lu—of - z| + w)z
ol - || — 1f @]+ 1 )z ~ I )
2-Li
+—Jﬂﬂwm—u+ww
?|lu— || +2¢- Lip(f) < 2(2+ Lip(f))e.
This gives the first assertion, setting y = x +ru,z = y +rv, since thenr = ||[x —y|| =

|x — z|| . The condition (xx) gives

|d(f(y +60), f()) = 1 | () (y + 60 —y)| <6

By (x * x), wi () = €2 is modulus of continuity for |f'||K, hence the assertion. — [
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3.3.10. The set of norms on R", endowed with the metric J, is a separable metric space.
In fact, the set of all finite subsets of Q" is countable. Let p be a norm on R”, and ¢ > 0.
We assume, as we may, that 7 - ||ull2 < p < ||ull2. Choose xp, ..., xny € Q", such that
{p=1} C U “oB(xj,€). Let B = co(%x,...,+xn). Then B is convex and symmetric,
so the Mmkowskl gauge

g(x) =inf{t > 0|t 'x € B} forall x € R"

isanorm on R" . By supplementing +x; by rational multiples of standard basis elements
ej, we may assume co(=ey, ..., £e,) C B, soq < /n|u2. (Note p(£e;) < 1.) Let
0 < |x||<1.Thenforallj=0,...,N,

x x
x)—qx)|=px)- 1—g| —= ]| = ( ) ‘
() = ()] = p(x)-| q(p(x))' pe) - [ate) = (75
Since dist({xo, ..., xn},{p =1}) < £, wefind 6(p,q) < L
Proposition 3.3.11. Let f : R" — X be Lipschitz, A > 1. There exist disjoint Borel sets
B; C R", such that U;Z, B; is the set of points at which f is metrically differentiable and

|f'| is a norm, and norms pj on R", such that

X

p(x)

x]-—

i =) SA(F(), F(y) SA-pilx—y) forall xy € B;.

Proof. Let P be a dense countable subset of the set of all norms on R”, and fixe > 0,
such that % +¢& <1 < A—e€. Let B be the Borel set of points at which f is metrically
differentiable. Then for x € B, |f’|(x) is a norm if and only if x € U,cp B, where

By={y€B|VveR": (;+e)pv) <If|(y)o < (A+e)p(v)}.
Moreover, by the definition of metric differentiability, the Borel sets
By ={x€By |VYyeB(xg): |[d(f(x),f) - IfI(x)(x—y)| <e plx—y)}

forallp € P,k € IN\O, form a cover of B. For each (p,k) € P x (N\O0), form a
countable disjoint Borel partition by sets B, of diameter < % . Then, for x,y € Bpke,

TP —y) <) (x —y) —ep(x —y) <d(f(x), f(y)) < Ap(x—y),

proving the assertion. O

Remark 3.3.12. Our presentation of Rademacher’s theorem 3.3.1 follows [Mat95], the
remainder of the subsection follows [AK00b] and [Kir94]
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4 Rectifiability

4.1 Area Formula

Definition 4.1.1. Let 0 < s < co, V, W be a normed vector spaces and p : V — [0, 0] a
sublinear functional. Define the s-Jacobian of p by

w

Js(p) = ngl} € [0,00],

Here, 5 =ooand S = 0 for ¢ > 0, and the Hausdorff measure is defined w.r.t. the norm
onV.If L:V — W is linear, define the s-Jacobian of L by

]S(L> = ]S(HLH) .

Proposition 4.1.2. Let k = dimU = dimV < dim W where U, V and W are normed.
Whenever S: U — Vand T : V — W are linear,

Jk(ToS) =Ji(T) - Jk(S) .

Proof. Since T(V) is contained in a k-dimensional subspace of W, we may assume
dimW = k. Moreover, we may assume U = V = W = RF with possibly distinct
norms. Then forall x € R¥, and r > 0

JW(T) = H*(Bw(0,1)) B H*(Bw(x, 7))
ST HH(T 1By (0,1))  HE(T 'Bw(x,r))

by theorem 2.4.3. If H*(T~1(Bw(0,1))) = oo, then since H*(A(IR™)) = 0 for any m < k
and any linear A : R" — R, we find T-1(B(0,1)) = R¥; in other words, T = 0.
Otherwise, corollary 1.9.6 shows that J;(T) - T(H¥) = H*. Hence

Je(SoT)- (SoT)(H) = H* =Ji(S) - S(H*) =Ji(S) - S(k(T) - T(HY))
=TJi(S) - Jk(T) - S(T(H")) =Tk(S) - Je(T) - (So T)(HF).

This proves the proposition. O

Area Formula 4.1.3. Let (X, d) be metric, f : R" — X be Lipschitz, and A C R" be Borel.
Then

J3n(1F160) a2 (x) = 2 [ N(F| Ay) dr(w)
where a, = L"(B(0,1)) . Moreover, J,,(|f'|(x)) = 0 for L" a.e. point x at which | f'|(x) is
not a norm.

Remark 4.1.4. As a corollary, we shall prove &, = w;, .




4.1. Area Formula 59

We first note the following simple lemma.

Lemma 4.1.5. Let E be normed, 0 < s < f < coand f : E —]0, o[ be positively homoge-
neous. Then

lime—os | A = oo
e—0+ (e<f<1} f
Proof. If ¢ > 0is any integrable simple function, then for all A > 0,

[snarx) = ¥y (g7 ) = a7 [ s ar().

0<y<oo

Hence, the corresponding formula is true for any positive function in place of g. Define
sets Aj = {270+) < f < 277}, Then Aj = 2A;; since f is positively homogeneous,
and we deduce

[ = [ @FE) @ =z [ e

Therefore,

-1
tare =y [ frane

j-1
— —t dHS - 2k(t—s) _
{1/2<f<1} f ,g)

2i(t=s) _ 1

e “tane,
2t=s — 1 /{1/2<f<1}

which tends to infinity for j — oco. O

Proof of theorem 4.1.3. We first assume that for any x € A, |f'|(x) exists and J, (| f'|(x))
is anorm. Let T > 1. By proposition 3.3.11, there exist countable Borel partitions P; of
A, lim;sup{diam B|B € P;} = 0, and norms ||i||p, B € P;, on R" such that

T x—yls <d(f(x),f(y)) <T-|lx—yllp forall x,ye BeP;.

This implies, on the one hand,

% Ayl = = - flx = (x4 r)lls < |F](x)y = limy o, d(f(x), f(x+ry))

<T.
iy : <7 lyls

whenever x € B is an L" density point, and on the other hand,
" HﬁuHB(C NB) <HG(f(CNB)) <t"- Hj,,(CNB) forall CC A.

The first estimate gives

Wy Wy

~H [l <1}~ HIFI) <)

J.(llullg) " T, (|f'|(x)) forL"ae.x €B
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and similarly J,, (|f'|(x)) = " - Ju(||lu||) for L" a.e. x € B. Seta, = L"(B(0,1)) ; then

71’1

_2n / n W "
/B]"(|f )dct < /]n [ulls)dc” = H ol <1 LH(B)
Tt w Ll <1} LR
T <) 8= e )
2
< Gy HRUE) = G [ <3 (7 acr.

where theorem 2.4.3 was employed. As in the proof of theorem 2.2.2, we find

EBeP < g1 — N(f[A L),

so corollary 1.5.6 gives the equation.

Since |f’|(x) exists for a.e. x € R", and both sides of the equation equal zero for
L" negligible A, it remains to prove that both sides vanish for any A such that for each
x € A, |f'|(x) exists, but is not a norm. To that end, factor f = 7o f, wheree >0,

fe:R" - XXR":x— (f(x),ex) and m=pr:XxR"— X.

If we consider the box metric on X x R", then f, is L = Lip(f) Lipschitz for ¢ < L and
mt is 1 Lipschitz. Hence,

/N(f | B) dH" < H"(f.(B)) forall B€ B(X), BC A,

by theorem 2.2.2. (Since f(IR") is separable, there is no loss in generality to assume X
separable.) Choosing Borel partitions as above, we find

SN ayare < [N(f ] ayare =S [ (1) acr,

where the first part is applicable since |f{|(x) = max(|f’|(x), e ||u]l2) is a norm when-
ever it exists. Thus, |f’| < |f/|. Hence, both sides of the equation vanish as soon as

lime o4 Ju (|f{](x)) =0 forall xe A.
To prove this statement, let u € S"~! be such that | f'|(x)u = 0. Then define

pr:C=B(0,1)Nut -8 :yrsy+,/1—|ly||2 usothat S" ! = p, (C)Up_(C)

with H" 1 (p; (C)Np-(C)) = 0. Then

2
Ips(x) = pe I = lx = yl2+ (/1= 22 = /1= [912)* = lx — v,




4.1. Area Formula 61

which implies H"~!(p(B)) = H"1(B) for all Borel sets B C C. Furthermore,

If’\(X)(Pi(y))<|f'\ 1—Ilylz-lf’l Ju=|f1(x)y
<|f(x + /1=yl [F 1w = 1£1(x) (p=(v)) -

Thus, [f'[(x) (p+(y)) = |f'|(x)y. Because Lip(|f;|) < max(L,¢) = L, we may estimate

2ann 1
wy

AR <1 [ W)
= L [ o min((f 1P ) e ) ar )

e2=1

>2 [ min((1f|(x)y) "¢ ) a1 y)

>2/Cmin((L|yy||)—",e—")dH" 1 Ol dH

o /{L<| H<1}

by corollary 2.4.6 and theorem 2.2.2. Hence, for some R > 0,

Wy

lime—o+ Jn (| f£1(x)) = lime—o+ H{f](x) < 1}

—1
<R-lim, / “ngnn1) =0,
ime o et )

by lemma 4.1.5, proving the theorem. U

We obtain the following rather general change of variables formula.
Corollary 4.1.6. Let (X, d) be metric, f : R" — X be Lipschitz, and consider H" = HJ;.
@(i). If ¢ : R” — R is Borel, then

810y acr () = 2 [ ¥ s dn (),

n

provided one the integrals exists.

(ii). If h : X — R and A C R are Borel, then

[ L (F1) ") = 22 [ )N (| Ay)dr(y),

n

provided one of the integrals exists.

Proof of (i). First, let ¢ > 0. By lemma 1.3.3, we obtain by pyramidal approximation a
sequence (Ay) of Borel sets, and constants a; > 0 such that g = Y ;2 ;a,14, . By corol-
lary 1.5.6 and theorem 4.1.3,

/Rng‘ln(\f’!)dﬁn Ik;)ak/Akln(\f’y)dﬁn
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=f:1-§ak/XN(f|Ak,u) dH”:z]—':l-/xzf(y):xg(x)dH”(y),

since Y g(f 1)) = Lo ax - #(Ax N f~1(y)) . The general case now follows by defini-
tionof [, writingg =gt —g~.

Proof of (ii). This follows form (i), applied to the functiong =14 -ho f. —— [

In order to give some applications of these formulae, we need to find computable ex-
pressions for the Jacobian. We give some expressions in the Euclidean setup, which also
link the above results to the more familiar Euclidean change of variables formula.

Proposition 4.1.7. Let L : R” — R" be linear. ThenJ, (L) = 0 for n > m, and for n < m,
Jo(L) = |detS| where L =08,

S = §* (S is symmetric), and O*O = 1 (O is an isometry). In particular, in this case,

Ja(L) = /det(L*L) .

Moreover, we have w, = &, = L"(B(0,1)) .

Proof. We have J,(L) = J,(|L'|(x)) for all x, and the latter vanishes for L" a.e. x for
which ||L|| is not a norm, by theorem 4.1.3. Thus, we may assume that L is injective,
which implies n < m. Then let L = OS. By theorem 4.1.3 again,

Ju(L) = Tu(L) - £7([0,1]") = == - 1" (L([0,1]")) = = - H"(S[0,1]") -

Wy Wy

The matrix S is symmetric and therefore orthogonally equivalent to some diagonal ma-
trix D = diag(Aq,...,Ax), SO

n n An n n An n n
det(S)] = [A1 -+ Au] = £7(D([0,1]")) = = H*(D[0,1]") = =% H(5([0,1]")) ,
by theorem 2.4.3. Moreover, L*L = SO*OS = S? and
Ja(L)? = det(S)? = det(L*L),

proving the second claim.
Now, to prove that £"(B(0,1)) = wy,, define f : [0,00[x [—7, 1] x [-F, 5] — R" by

f(r,0,...,0%-1) = (rcos ¥,_1---cos®,rcos®,_1---costhsinty,.. .,rsint?n_l)
is differentiable and an immersion at £" a.e. x, and

det f'(r,8) = r"1-cos" 28, 1---cosds .
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Hence, setting Q = [0,1] x [—7, 7] x [-7/2, /2" 2,
g I L
wn =H"(B(0,1)) = 4" /Q]n(f)dﬁ - /Q\detf ldc",
by the above computation and the area formula 4.1.3, and this gives

2 A2 /2
Ny = — - cos/ (x)dx = w, .
" n H/—H/Z ( ) "

Thus, £L"(B(0,1)) = ay = wy . O

4.1.8. We can now give some applications. If 7y : R — IR" is Lipschitz and injective (more
generally: the set of double points in y(IR) is H! negligible), then the curve C; = ([0, t])
has length

() = 1) = [ ldct.

In particular, if 7(t) # 0 for £! a.e. t € R, then ¢ is a strictly increasing function which
can be inverted on I = ¢(R). If ||¥| is locally summable, then ¢ is continuous and I
is an interval containing 0. We may then reparametrise the curve by arc length, i.e. the
function defined by o(r) = y(¢~(r)) for r € I is continuous, and C; = o([0, £(¢)]) .

Generalising the first example, let f : R" — IR be an injective Lipschitz map, e.g. the
local chart of an embedded submanifold. Then

fr) f'(x) = G(x) = ((0if ()19if (¥))) 1< -

and thus ¢ = detG = J,(|f'])?. We find the volume of M = f(A), A C IR" Borel,

H' (M) = /A\/gdm.

In particular, if m = 1 and f(x) = (x, h(x)), the surface area of the graph is

H" (Gr(h]A)) = /A J1+ wRdcn.

For the latter statement, we have used the Binet-Cauchy formula

det(L*L) = Z det(&kj)lgi,]‘gn forall L = (&]) e R™™,

1<k <<k <m
The formula is valid for any n and m, both sides vanishing for n > m.

Remark 4.1.9. The presentation of the material in this subsection follows [AKO0Ob], al-
though the proofs are from [Kir94], with the necessary modifications to make them in-
dependent from the Euclidean change of variables formula.
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4.2 Rectifiable Sets and Measures

In the following, let X be a metric space. Often, we shall assume that X be separable

and/or complete.

Definition 4.2.1. Let A € B(X). We say that A is countably k-rectifiable if there exist Borel
sets A; C R and Lipschitz functions f; : A; — X such that H*(A \ U fi(4))) = 0.

A finite Borel measure y on X is called k-rectifiable if i is concentrated on a separable
subsetand y = ¢ - H* L A for some countably k-rectifiable Borel A C X and some Borel
function 9 : A —]0, c0].

Remark 4.2.2.

(i). Countably rectifiable sets are closed under countable unions.

(ii). If X C Y where Y is metric and X is Borel in Y, then A € B(X) is countably
rectifiable in X if and only this is the case in Y. Indeed, Hausdorff measure on Y restricts
to Hausdorff measure on X .

(iii). Clearly, If X is a Hilbert space, separable, or otherwise isometrically embedded
into /*°, we may replace f] : Aj — X in the definition by f] : RF — X or even a single
Lipschitz f : R¥ — X, by theorem 3.1.1 and proposition 3.1.5.

(iv). By proposition 1.2.2 and theorem 1.2.5, u is automatically concentrated on a sep-
arable subset if X is c-compact or contains a dense subset whose cardinality is an Ulam

number.

Lemma 4.2.3. Let A C X be countably k-rectifiable. Then there exist a countable compact
family X C P(RR) and bi-Lipschitz maps fx : K — f(K) C A such that fx(K) are
pairwise disjoint and H* (A \ Ukex fx(K)) = 0.

Proof. Let A; C R* be Borel, fj + Aj — X be Lipschitz, such that
H (AN f(4)) =0.
j=0

Let B; be the set of x € A; such that | f]-’ |(x) exists and is not a norm. Then

HA(f(B) < [ NUfIB ) art = [1(fhdck =0,

by the area formula 4.1.3. Thus, shrinking A;, we may assume that |f/[(x) is a norm
whenever it exists. By proposition 3.3.11, by further subdividing the A;, we may assume
that the f; are bi-Lipschitz onto their images.

Now, define Borel sets C; by

Ci=a\f (AN fi(4)) forall jeN.

i<j
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Then f;(C;) C A are pairwise disjoint and H* almost cover A. Almost covering C; by
countably many disjoint compacts (theorem 1.1.9 (iii)) changes the image f]'(C]') only by
a zero set (theorem 2.2.2). ]
Definition 4.2.4. Let E be a separable Banach space, Y = E*, S € B(Y), S = f(B) for
some B € B(IRF) and a Lipschitz map f : R¥ — Y such that f|B is injective. Then, for any
y = f(x) € Ssuch that f is metrically and weak* differentiable at x , with J;(f.(x)) > 0,
define the approximate tangent space of S at x by

Tan*(S,y) = fo(RY).

If S is countably HF*-rectifiable, H* (S \ U; fi(B;)) = 0, where f; : B; — Y are bi-Lipschitz
onto their images, then define the approximate tangent space by

Tan*(S,y) = Tan*(fi(B;),y) forall y € SN f;(B;).

We need to see that this definition is well-posed, and moreover, a.e. independent of the
choice of parametrisations.

Lemma4.2.5. Let S; = fj(B;) € B(Y), f; € Lip(R,Y), such that f;|B; are injective,
j=1,2. Then

Tan*(S1,y) = Tank(S,,y) for Hfae. y€S1NS,.

The conclusion holds also for any pair of countably k-rectifiable sets S;, j = 1,2.
Proof. Let K C 51N Sy be closed. We prove C for HK ae. y € K. Then the statement
follows by symmetry and inner regularity.

Thus, set K; = B; N f]-_l (K) . Moreover, let K]/. be the subset of L£¥ density points for
K;, at which f; is metrically and weak™ differentiable, with non-vanishing Jacobian. We
will prove C atany y € K' = f1(K}) N f2(K3) .

Lety = fi(u) = fo(v) € K'. Since u is an L density point for K;, there is an
orthonormal basis ey, . . ., e; of R¥ and a sequence t,, — 0+ such that u + t,,e; € K for all
i=1,...,k,meIN.Fix1 <i<k,andletu, =u+tye; — u. Theny, = fi(um) — y,
and we may assume (possibly passing to a subsequence) that for v,, = f, '(ym), the
sequence ||v — vy, || 7! - (v — vy,) converges to some e € S¥~1. (Note that u,, # u implies
Ym # Yy, which implies v, # v.)

Now, in the o(Y, E) topology,

Ym —Y
tm

[ym =yl Mom=vol  fo(ow) = fo(v) _ |fil(W)ei
tn 1f2(0m) = fa(@)I| - fom — o] |f35(v)el

fl/a(u)ei = limy; 0

fa(0)e,

= lim;; 0

so fl_(y)e; € Tank(Sy,y) . Since i was arbitrary, the assertion follows. ——— [
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Similar arguments give the following more intrinsic characterisation of the approximate

tangent space (by secant vectors).

Proposition 4.2.6. Let S € B(Y) be countably k-rectifiable. Then there is a countable
Borel H* almost cover (S;) of S such that for all k,

Tan* (S, y) NS(Y) = {v ey ‘ Juy, € Sk v = limy, H in Yg}
o

for H¥ a.e. y € Sy, where S(Y) is the unit sphere of Y = E*.

The following proposition enables us to define the approximate tangent space indepen-
dent of a particular embedding into a dual Banach space (see below).

Proposition 4.2.7. Let S C Y = E* be countably k-rectifiable, and H*(S) < oo. For
HFae.y € S, there exist a Borel S, C Y, such that ®(S\ S;,y) = 0, and a weakly
continuous map 71, : Y — Tan®(S,y) such that 7, |Tan*(S,y) = id, and

[77y (4 — o) |

_1’
[ — o]

limH(Hsup{ u#v,u,vEB(y,r)ﬂSy} =0.

Proof. W.l.o.g., let S C f(IRF) for some Lipschitz map f : R¥ — Y. Let a countable Borel
partition (B;) of the set of points in R¥ be given at which f is weak* and metrically dif-
ferentiable, and the Jacobian is non-vanishing, such that f|B; is bi-Lipschitz onto f;(B;)
for all i (proposition 3.3.11). Let (K;) be a countable family of compacts, such that

£ () = fF@)l = 1£1(0) (u = 0)] < wj(lu—oll) - Ju~ o] forall u € R, v € K;

where w; are moduli of continuity for | f'||K;, by the metric mean value inequality (theo-
rem 3.3.9). Let S;; = f(B;NK;). By the area formula (theorem 4.1.3), the set of all
y = f(x) such that J¢(|f'|(x)) = 0 is H* negligible, so (S;;) H* almost covers S.

Lety = f(x) € S;;. Then f;(x) is injective, and Tan*(S, y) is k-dimensional. Then the
weakly continuous projection Tty i8 obtained by choosing a basis u1, - - -, uy of Tan* (S,y)
and the dual basis (u,, : vy) = dun. There exist weakly continuous extensions p, €
(Ys)* = E of v, by the Hahn-Banach theorem. Then 7, (u) = YK () - uy gives the
desired map.

By corollary 2.3.5, for any fixed i, j, HFKae.z € Si; satisfies @ (S \ Sij,z) = 0. Then
the assertion will follow for S, = §;; as soon as we have established the convergence
statement for each of these sets.

Since f;|B; is bi-Lipschitz, the convergence will follow from

(I o)
tmr o+ p{ 17— F@)] 1‘

u#0v,uU0e€ B(x,r)ﬁBiﬂK]} =0
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and

1 fo(x) (u — o) |
70y (£ () = f(2)) |

The first of these two statements follows from

_1‘

limr_,0+sup{ u#v,u,veB(x,r)ﬂBiﬂK]} =0

1) (u — o) o fu—ol
OE ﬂﬂ|4<%W‘W)ww—ﬂw

since f|B; is bi-Lipschitz. Similarly, for the second,

forall u #v,u,v € B;NK;,

| fo(x) (u —v)]]
7y (£ () = f(2)) |

Now, ||7r, (u)]| is weakly Ls.c., so

L TTRE ORSOIT)
[ (7o) = £@)]

_1‘\

|7ty (fo(x) (u — 0) — f(u) + f(0) |

[ — o]l

llmr—>0+ Supu;év,u,veB(x,r) - O .

Moreover, for any sequence (u, V) — (X,X), Um 7# Um, Um,Om € B; N K;, such that

Um—Om
[

converges to some e € $"~!, we find

f(um) = f(vm)

)
e T

= fl(x)e in Y,.
Thus, again using the weak* lower semicontinuity of || 7z, (u)||,

Iy (£ () — £ (2)) |

lu = o]l

> inf, g || Ty (fo(x)e) |

= inf,cq 1| f}(x)e]| > 0.

lim lnf7—>0+ lnfuyév ,u,0EB(x,r)

Hence, the right hand side of (x) is the product of a bounded term and a term converging

to zero, so the assertion follows. O

Definition 4.2.8. Given a metric space X and a countably k-rectifiable S € B(X), fix an
isometric embedding j : S — Y = E*, E a separable Banach space. Define

Tan*(S, x) = Tan*(j(S),j(x)) forall x € S for which this make sense.

Then Tan* (S, x) is well-defined up to isometries H* a.e., by propositions 4.2.6 and 4.2.7.

We round off the section with characterisations of rectifiability for sets and measures.

Definition 4.2.9. Let E, F be Banach spaces. Consider the weak Grassmannian variety

II(E*,F) = {L: E* — Y| L linear,weak” continuous, rk L = k} .
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Define a pseudometric v on Il (E*, F) by
WL L) = sup{|L(x) — L'(x)| | x € E, [lx] <1}

Here, recall that a pseudometric is a function satisfying all the axioms of a metric save
the separation axiom. Of course, a pseudometric induces a (usually non-Hausdorff)
topology in the same way as does a metric. The following lemma shall be useful.
Lemma 4.2.10. If E is separable, then so is II;(E*, F) , in the topology induced by 7.
Proof. Any L € ITi(E*, F) may be factored through R¥. The proof uses the separability
of E and of the set of norms (i.e. closed convex symmetric neighbourhoods of 0) in RF,
cf. 3.3.10. For details, we refer to [AKOODb, lem. 6.1]. [l
Proposition 4.2.11. Let E be a separable Banach space, and S C Y = E* a separable
subset. If, for each x € S, there are ¢,,7, > 0, and 71, € TI;(Y,Y) such that

|7ty —x)|| > exlly — x| forall y € B(x,7:) NS,

then there exist Lipschitz functions f,, : R — Y, such that S C Uj_y fu(RF). In
particular, if S is Borel, then it is countably k-rectifiable.

Proof. Let S, = {x € S | min(ey, 7x) = 2} . Then S = U Su . Select a dense sequence
(7tm) C Ik (Y,Y), by lemma 4.2.10. Define

Snm: {xeSn

1

Note that V;, spans a k-dimensional subspace of Y, and is thus contained in the image
of a linear (and hence Lipschitz) function RF - Y.
Now, let S, = U7 Sume where diam S, < % (S is separable). If u,v € S0, then

|7t = 0)| > 700 (4 = 0)| = o - llu = 0]l > o - u— o],

2n 2n

SO Tty @ Syme — Vi is bi-Lipschitz onto its image. By proposition 3.1.5, there exists a

Lipschitz function f,,,, : RF - Y containing S, in its image. U
Proposition 4.2.12. Let u be a finite Borel measure on Y = E*, E separable. Then y is
k-rectifiable if and only if for y a.e. x € X,

(i). we have
0 < Ops(p,x) < Of(p,x) <oo, and

(ii). there exist ey > 0and 7, € ITk(Y,Y) such that for
Co={yeY||my—x)| <ex-llx—yl},

we have O (p L Cy,x) =0.
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Proof. Because Y has no isolated points, the lower density condition shows that u is
concentrated on a Borel set S o-finite w.r.t. H*, by theorem 2.3.3. Similarly, the upper
density condition shows that i is absolutely continuous w.r.t. H* LS. Then the asser-
tion follows from theorem 1.9.5 as soon as we can prove that S is countably k-rectifiable.

To that end, it suffices to verify the assumptions of proposition 4.2.11 the sets

B(x,
S5z{x€S’V0<r<5:W25}

defined for § > 0. To that end, fix x € Ss, and y €]0,1][, so that

Ex

E‘f")" 7] S ex- (1=17).
We claim that for y sufficiently close to x, we have

2|y = x) | 2 - lly = ]| (*)
Indeed, for any z € B(y, v - ||ly — x||) , we have
ly =l <lly =zl +llz = x| <7 lly — [ + [z = x|,

so |ly — x| < ﬁ -]z —x]| . Letr = ||y — x|| . Whenever (x) fails, we find

I70(z = 2)|| < [l (y = 2) | + [0 (2 = W)

ExT &
<5l =yl < (4l ) 7 <enellz =l

Hence, B(y, yr) C Cx . Thus, if () fails for arbitrarily small r, we find

k y(B(x,'yr)) < y(B(x,r))

(S < S 0 7
v v T
a contradiction! Hence, (*) holds for y close to x, the required condition. —— [
4.3 Tangential differential and general area formula

The next natural step in our attempt to reconstruct the elements of differential geome-
try in a purely measurable metric setup is to remove the explicit reference to Lipschitz

parametrisations.

Theorem 4.3.1. Let Y = E* and Z = F* be duals of seperable Banach spaces, S C Y
countably k-rectifiable, ¢ : S — Z Lipschitz, and y = 9 - HF L S, where ¢ : S —]0, 0]
is an H* summable function. Then, for H* a.e. x € S, there exist a continuous linear
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Ly:Y, — Z, and a Borel S* C S such that

d , Le(y —
Of(4L Sx) =0 and limggiay (W8 +Lily=») _

Iy — x|

d, denoting the canonical metric defining the o(Z, F) topology on the unit ball of Z,
cf. 3.1.7.

Moreover, L, is uniquely determined on Tan*(S, x) . Writing d°¢(x) = Ly|Tan*(S, x),
this tangential differential is characterised by

(goh),(a) =d°g(h(a)) ohly(a) for Lfae acA,

and every Lipschitzh: A — S, where A C RF.
Proof. Up to H* negligible sets, we write S = (U, f(B;) where f : R* — Y is Lips-
chitz, f|B; is bi-Lipschitz with non-vanishing Jacobian, and metrically and weak* dif-

ferentiable. Also assume that g o f is weak™ differentiable on each of the B;. Fix any
y = f(x) € f(B;), and define L, on Tan*(f(B;), f(x)) by

Ly(fo(x)u) = (go f),(x)u forall u € R,

and applying the projection 71, from proposition 4.2.7. The statement follows from the
non-trivial density result [Kir94, th. 5.4.]. [l

Definition 4.3.2. Let X, Y be separable metric spaces, S C X countably k-rectifiable, and
g+ S — Y Lipschitz. Choose isometries jx : X — E* and jy : Y — F* where E,F are
separable Banach spaces. Then define Jacobian of g by

Ji(d%9) (x) = Je(d*S) (jy 0 g0 jx 1) (jx(x))) forall x € S

where this makes sense. That this is H* a.e. well-defined is part of the following theorem.

General Change of Variables Formula 4.3.3. Let ¢ : X — Y be Lipschitz, where X and
Y are separable, and S C X be countably k-rectifiable.

(i). The Jacobian J;(d°¢) is H* a.e. well-defined.

(ii). For all Borel maps ¢ : S — [0, o] , we have

fen@garnt= [ ¥ exdn),

xesng~1(y)

(iii). For all A € B(X) and all Borel functions ¢ : Y — [0, 00|, we have

[, #(6(0) - 1(@g) (x) a1 (x) = [ 8N (glA,y) dH ().
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Proof. Claim (ii) follows from (iii) in the usual way. Moreover, the right hand side in (iii)
is independent of embeddings, so (i) also follows from (iii) one this has been established
for an arbitrary embedding. By c-additivity, we may assume S C f(IR¥) where f is bi-
Lipschitz and has non-vanishing Jacobian. Then the defining equation for the tangential
differential, the chain rule for the Jacobian, and the change of variables formula (corol-
lary 4.1.6) give

[ M@ ) drt(x) = [ oeI((go ALl U () dH (x)

A

RGO AEERHENERE
= [ BIN(go I (4)y) dH (),

whence the assertion, since N(g|A,y) = N(go f|f1(A),y), f being injective. — O

Remark 4.3.4. The main body of this section follows [AK0Ob], with some aspects derived
from [Kir94], and lemma 4.2.3 being [AKO00Oa, lem. 4.5].
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5 Currents

5.1 Metric Functionals

In the following, let (X, d) be a metric space; usually, we shall assume X to be complete.

Definition 5.1.1. Denote by Lip(X) the set of all Lipschitz functions X — R, and by
Lipy(X) the set of all bounded Lipschitz maps. Let D¥(X) = Lip,(X) x Lip(X)¥ for
all k € N, and MF;(X) be the set of maps T : D¥(X) — R such that |T| is positively
homogeneous and subadditive in each variable. The elements of MF;(X) are called k-
dimensional metric functionals.

Elements w = (f,my,..., ) € DF(X) shall be denoted w = fdrm; A--- Admy or
even fdm where m = (my,..., 7). In the sequel, it shall be become clear why this
notation is justified.

The exterior differential is the degree 1 linear endomorphism d of the graded vector
space D*(X) = 2% D*(X), defined by

d(fdm A---dm) =df Ndm A= Ndm .

The boundary operator is the dual degree —1 linear endomorphism of the graded vector
space MF, (X) = ¥,°% MF(X), defined by

(w:dT) = (dw: T) forall we€ DXX), T € MF1(X),k>0.

Assume ¢ : X — Y is Lipschitz. Then the pullback along ¢ is the degree 0 linear map
¢* : D*(Y) — D*(X) defined by

e*(fdm A---Ndmy) = (fog)d(mo@)A---ANd(miog).

Dually, we obtain the pushforward ¢, : MF,(X) — MF,(Y), the degree 0 linear map
given by
(w: @eT) = (9°w : T) forall w € DY), T € MF(X).

Let T € MF(X) and w = gdry A -+ - ANdt, € D™(X) where 0 < m < k. Then we
define the contraction T L w € MF;_,,(X) by

(fdm N Ndmy_p T w) = (fgdu N---Ndty Admy A=+ - Ndmg_py, = T) .

We say that T € MFy(X) has finite mass if for some finite Borel measure y on X,

k
\<fdn1A-..Adnk:T>yg/\f\dy- Lip(r;) forall fdm A-- Adm € DE(X) .
=1

]

5. Currents
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Because Lip,(X) is dense in L'(x), T can be uniquely continuously extended to the
space By, (X) x Lip(X)¥, where B, (X) are the bounded Borel functions on X .

Proposition 5.1.2. Let T € MF,(X). If T has finite mass, then there exists a smallest

finite Borel measure y on X satisfying

k
\(fdr[l/\~--/\d7'ck:T>|</|f|dy-HLip(nj) forall fdm A---Adm € DF(X),
j=1
()

This measure is called the mass of T, denoted ||T|| .

In fact, T has finite mass if and only both of the following conditions hold:
(i). There exists a constant 0 < M < o0, so that for (f;) C Lipy(X), (n]l) C Lip(X),

;)\(fidni/\---/\dnfq :T)| <M whenever ) [fi| <1, Lip(n?) <1;
i=

(ii). for any (7;) C Lip(X), the sublinear functional |T(w, 77y, ..., 7T, )| on Lipy(X) is
continuous on uniformly bounded increasing sequences, i.e., sequences ( fx) C Lip,(X)
is such that (fi) is pointwise increasing and sup, .y ol fe(x)| < oo.

Moreover, || T|| is given by
|T||(B) = sup{E|<1Bj Al A -+ Adr: T ‘ B= 4B, ¢ Lipl(X)} . (k%)
j=0 j=0
for all B € B(X), and ||T||(M) is the least constant in (i).

Proof. Let conditions (i) and (ii) hold. Let 7 = (m,..., ) € Lip1(X)¥. For U C X
open, define

ur(U) = sup{|(fdm A---ANdm: T)| | f € Lipy(X), |f| < 1u} where sup@ =0.

Let U C U2, U;j where U; C X are open. We claim pi-(U) < L% p(U;) . To that end,
let 1/)]N =min(1, N - dist(u, X \ Uj)),

N IP]N Al N
TS 5"

1
1+ (N-zjiogb]f.“)*

7 on U U .
j=0
Then 0 < ¢n < ¢n+1 < 1,and 1 = limy ¢y point-wise on U2y U; .
Indeed, if dist(x, X \ U;) < &, then

$ (x) = N - dist(x, X\ Uj) < (N +1) - dist(x, X\ Uj) < 97 7 (x),
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and if dist(x, X \ U;) > 4, then dist(x, X \ U;) > ﬁ , and gij(x) =1= 1p]].\'+1(x).
Thus, ¢y < Pn11. I x € U}io U;, then x € U; for some j € N, so

PN (x) = forall x, N > dist(x, X \ U;),

which proves that limy ¢n(x) = 1.

For f € Lipy(X), | f| < 1y, condition (ii) implies

N )
’<fd7'[1/\"'/\d7'[k . T)’ :th Z<f'(p§\ld7'[1/\--~/\dﬂ'k : T>‘ < Zyn(ll]),
j=0 j=0

proving our claim. Now, we may extend ji to arbitrary sets by

Hr(A) = inf{Zueu ir(U) ‘ A c |JU, U countable open family} .

As in the proof of proposition 2.1.2, we see that j,; is a Borel measure. Because of condi-
tion (i), it is finite. Next, we claim that

|<fd7'clA---/\d7'ck:T)]</|f|dyn forall f € Lipy(X) .

Because of f = fT — f~, |f| = fT + f~, and the subadditivity of |T|, we may assume
f>=0.Set f = min(t, f) fort € R. Then, foralls > ¢,

[(fodres A= Adry T) = [(frdm A+ Admg: T < {(fo— fi)drir Ao Adry: T)|

<
S (s—1) - pnif > 1},

since fs—fi=f—f=0on{f <t},and fs — fy = fs —t <s—ton{f > t}. Hence,
g(t) = |{(frdmy A --- ANdmy : T)| is a Lipschitz function, and |’ ()| < ¢(t) = u-{f > t}
whenever g is differentiable and ¢ is continuous (which is £! a.e., since ¢ is decreasing).
Thus,

|(fdn1A---/\d7Tk:T>|:/Ooog’(t)dtg/oooyn{f>t}dt
= [ [T pn@dtdun(x) = [ £G) duntx),
proving our claim.

Now, u(A) = SUP reLip, (X) ur(A) for all A € P(X) defines a finite Borel measure
satisfying (x). If v is any finite Borel measure satisfying (), then the set function T on
B(X) defined by the right hand side of (xx) clearly satisfies T < v. On the other hand,

ur(B) < |(1pdmy A--- Admy: T)| < T(B) forall B € B(X), 7 € Lipy(X)*.
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This implies that 4 < v, by the Borel regularity of the finite Borel measures y and v .
Hence, p is the smallest finite Borel measure satisfying (*). Also, since u satisfies (x), we
find y = Ton B(X).

The statement about least constants follows from the equality

(%) = sup{ L) | fr € Libo(X), TIFI <1, 7 € (0}

which is immediate from the definition of . g

5.1.3. Metric functionals of finite mass behave well under push-forward and contraction.
Indeed, from (x), we immediately have

lpaTIl < Lip(¢)*- ¢u||T|| forall ¢ € Lip(X,Y),

where the right hand side is the image measure. In particular, if ¢ is an isometry, we have
equality. The defining identity for the push-forward remains valid for fdrm; A - - - dr
where f € B,(X).

As to contraction, it makes sense for w = fdm; A - - - Adm where f € By(X), and

k
ITL @l < I flle- T TLip(y) - 1T,
j=1

as follows from (x). If w = 1¢, wewrite T L CforT L w.

5.2 Currents

Definition 5.2.1. Let k € IN. A k-dimensional current on X is a k-dimensional metric
functional of finite mass T € MFy(X) satisfying the following additional hypotheses:

(). T is (k+ 1)-linear, and (fdm; A--- Admy : T) = 0 whenever 7; is constant on a
neighbourhood of { f # 0} for some i, and

(ii). Whenever 7r; = lim; 7'5;: point-wise and Lip(rc]l:) < C for some C > 0, then

(fdmy A~ Ndmy: T) = limy(fdm, A--- Adml 2 T) .

The support of T is supp T = supp||T||. The vector space of k-dimensional currents is
denoted My (X) . It is a normed space via the norm M(T) = ||T||(X).

Proposition 5.2.2. The space My (X) is a Banach space.

Proof. This follows easily from the fact that the set of finite Borel measures is sequentially
complete, and || T|| depends continuously on T € M (X), the remainder being entailed
by the Banach-Steinhaus theorem, applied to £ (B,(X)&Lip(X)® R). —— O
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Proposition 5.2.3. Let ¢ € LY(R¥,R). Then [¢] € M;(RRF), where [¢] is defined as
follows,
(Fdm A - Adm: Ig]) :/fgdetn’d/;k

where 7w = (711, ..., 1) . Moreover, ||[g]]| = |g| - £F.
5.2.4. First, recall the following commonplace concepts and results.

(). Ifl < p < oand % + % = 1, then the weak topology on L?(IR¥) is defined to be
the coarsest locally convex topology making the linear functionals

L'(R) - C: fr— /f -gdL*  continuous forall ¢ € LY(RF) .

With this topology, L (R ) identifies with the dual space of L1(R¥) , and the norm L” (R¥)
identifies with the dual norm. In particular, the unit ball of L”(IR¥) is weakly compact
(it is metrisable since its topology has a countable base, seeing that L7(IR¥) is separable).

(ii). We say that f € L} (RF) is weakly differentiable if for all j = 1,...,k there exist
gj € L} (R¥), so that

loc
SQipdLk = — @dlk forall 1<j<k, ¢ € D(RF
iP 89 ) ¢

where D(IRF) denotes the set of smooth compactly supported functions on R¥. The gj
are uniquely determined up to equality £ a.e., and are called the weak partial derivatives

(iii). For 1 < p < oo, let WP(IR¥) be the Sobolev space of functions f € LP(IRF) which
are weakly differentiable with 9;f € L?(R¥). Then W'#(IR¥) is a Banach space for the

norm
k k

1 yee = Il + YoN9if 1l if p < oo and || fllwie = max(]|f]|eo, max|0;fleo) -
j=1 j=1

Here, we identify a.e. equal functions. In fact, Wwhee (IRk) consists of true functions, as the
following lemma and corollary show.

Lemma 5.2.5. Let f, f; € Lip(R¥), Lip(fj) < C, and f; — f point-wise. Then f;, f have
weak derivatives 9;fj,9;f € L*(RF), and

/Bif-gdﬁkzlimj/aifj-gdﬁk forall i=1,...,k, g € L'(RF).

Proof. Set

. he:!) — f,
gg(x):f](X-l- e;z) f](x) forall xeRK, h>0.

Then HgZHoo < Lip(f;) < C,s0 gf; € L®(R¥), so (gf;) is contained in a weak* compact
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subset of L°°(]Rk) . Let hy — 0 be arbitrary, and fix 1 <i < n,j € N. Let h,) be any

. . R .
subsequence such that there exists g;; € Ll (IR¥) such that gij = lim, gl.].( " weakly in
L®(R¥) . Further passing to subsequences, we may assume that the convergence is also
point-wise £ a.e. Hence, we have Sij € L (RF), [giillo < C.

For ¢ € D(IR), Lebesgue’s theorem 1.5.7 shows

. q)(x + hzx(n)ei) - (p(x)
d;p = lim,, (x
| s /5t o)

= — lim, /gZ“(”(x)(p(erhLei)dx = — /81‘]'4)-

dx

Hence, the class g;; € L? (IRF) is independent of the convergent subsequence chosen, and
by compactness, we have convergence. Thus f; is weakly differentiable, and 0;f; = g;; -

To prove that 9;fj — 9;f weak® in L*(R), note that the ball of radius C in L*(R¥)
is compact and metrisable in the o (L%, L!) topology. Moreover, the limit

exists by Lebesgue’s theorem 1.5.7; the limit

lim, [ ! (”hgz ~S) k= tim, lim, [ &y -gact

exists by the same argument as above.

By Grothendieck’s double limit theorem [Bou87, IV.33, prop. 2], we may exchange
limit order to obtain

hmj/aifj.gdﬁk:hmn/f(x—f—hg)_f(x) 'gdﬁk:/aifgdﬁk,

n

as required. O

Corollary 5.2.6. Endow Lip, (R¥) with the norm

Iflip = If | +Lip(f) forall f € Lipy(IRY).

Then Lip, (RF) = WV (RF) , with equivalence of norms.

Proof. By lemma 5.2.5, any f € Lip,(IR¥) has essentially bounded weak derivatives.
Conversely, let f € WY°(RF). Let 7 € D(R¥), 5 > 0, be such that [ 7dL*F =1, and

fi(x) = L n(xgy)f(y)dﬁk(y) forall e >0, x € RF.

T

Then f = lim, o4 f° uniformly on compacts, and ||f*[|« < ||f|lc. Moreover, f¢ is
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differentiable, so

) = FW <N oo - llx = yll < N fllwr - [lx = yl| - forall x,y € RF.

Taking the limit e — 0, we find f € Lip,(RF). O

Proof of proposition 5.2.3. Clearly, [¢] is multi-linear, and vanishes on f drry A - - - A dry
as soon as 71; is constant on a neighbourhood of {f # 0}, since in that case, det ¢’ = 0
on {f # 0} . Moreover,

k
[(fdm A+ ndmg IgD| < [|fgdetr'|des < TTLip(my) - [Ifd(lg]- £,
i=1
because by Hadamard’s inquality,

k
|det A| <[ Jllajll forall A= (ay,...,a) € RFK
=1

Let 71; = lim, 7r]1: point-wise, where Lip(n;:) < C for some C > 0. Then we have
det 77’ = lim; det 77 weakly in L (R¥) by lemma 5.2.5. Therefore,

(fdmi A---Adrt 2 [g]) = lim(fdrmi A---Adml: [g]) forall f € Lip,(RF),

so [g] € Mk (RF).

We have seen that ||[g]|| < |g| - £¥. Conversely, if f € Lip,(IRF), we may assume
f #0. Then let x; € Lip,(RF), x; = 0on {f = 0}, x; — 1 point-wise, and |x;| < 1.
Define 7'(; = pr; forj>1,i€IN,and let

mh(x) = O1X|if£g(y,x2,...,xk)dﬁl(y) forall x e R, i € N.

Then it follows that

(Fan:1gh) = [ fgdetr” £ = [ - If1d(Is]- £ — [Ifla(lgl-£5),

proving the assertion. O

Definition 5.2.7. A current T € My (X) is called normal if 9T € My (X). It is clear that
dT satisfies condition (ii) in the definition of a current for any T € My (X), and (k + 1)-
linearity is also obvious. The locality property for 9T also holds automatically, as follows
from the stronger locality established for T in part (iii) of the theorem below. Thus, for

T to be normal, it is necessary and sufficient that 0T have finite mass. The vector space
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of normal currents will be denoted Ny (X) . Endowed with the norm defined by
Nk(T) = Mk(T) + Mk(aT) forall T € Nk(X) ,
the space of normal currents is a Banach space.

Theorem 5.2.8. Let T € My (X) . Its extension to Bj,(X) x Lip(X)F satisfies:

(i). Tis (k+ 1)-linear, alternating in 77;,
(d(frr)AN---ANdmy: T) = (fdm A---Ndm - T) + (mdf A---Ndm = T),
whenever f, m; € Lipy(X), and
(fdpr(m) A= ANdyp(mt) : T) = (fdety/ () dmy A+ Admy : T)
whenever ¢ = (1,...,¢x), ; € C1(RF), and ¢’ is bounded;
(ii). for f' — fin LY(||T|), 71; — 71j point-wise, Lip(nj-) < C for some C > 0,

(fdmyA---ANdm: T) = im(fdrm A -~ Adrk: T) ;

(iti). (fdm A---Adm: T) =0 whenever {f # 0} = ;2 B; where the B; are Borel,
and for all j, there exists some i such that 77;| B; is constant.

5.2.9. We recall some concepts from the theory of the method of finite elements.

A k-simplex A C R¥ is the convex hull of k + 1 affinely independent vectors from R,
called its vertices. The totality of vertices of A is denoted V) (it is uniquely determined
by A as the set of extreme points). A face is the convex hull of a subset of its vertices.
Given a bounded, closed polyhedral domain D C IR¥, a triangulation is a finite family 7
of k-simplices, such that any two simplices intersect only in their boundaries, and any
face of a simplex is either the face of another simplex, or countained in the boundary
of D (note that in the literature, rather more general triangulations are considered). A
family S of k-simplices is called reqular if S is fine, and
diam

r(A) ‘ Ac S} < oo where rp=sup{2r|3x : B(x,r) C A}.
A

0s = sup{

A family of triangulations (7;) is regular if |; 7} is.

Given a triangulation 7 of D, let A7 (D) be the set of functions f : D — R which
are affine when restricted to any A € 7. For any A € 7, and any vertex v of A, let
aya 1 RF — R be the uniquely determined affine function such that a, A (w) = yy for

all vertices w of A. Because of the requirement on faces of simplices in triangulations,
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there exists a uniquely determined linear map

pr:RP — A7(D) suchthat p7(f)|A = pa(f) = ZUEVA f(v)aya forall Ae T .

Lemma 5.2.10. Let (7;)0 be a regular family of triangulations of the bounded polyhe-
dral domain D, where sup, .+ diam A < ¢. Then, for some constant co > C > 0,

If = pzfllwie < C-e- | fllwi~ forall f € WH*(D?), e>0.

Thus, any Lipschitz function on D can be approximated in W%*(D°) by a sequence of

piecewise affine functions.

Proof. Fixe > 0and A € 7;. Let A = (diam A)~! - A. There exists an affine transforma-
tion A : A — S, S denoting the standard k-simplex S = {x € [0, 1]k|2§‘:1 xj =1}. The
Jacobian of A has a finite upper bound independent of A and € > 0, due to the regularity
of (7;) . Moreover, writing f(x) = f(diamA - x),

f=paf=0—p)f=(1—ps)(foA oA,

Thus, for some constant 0 < C < oo,

1f = pafllwies(ac) < Ce- [[1=psl - [ fllwreoae) -

The assertion follows by taking sums over A € 7. O

Proof of theorem 5.2.8. The continuity (ii) is fairly easy: by finiteness of mass and the
boundedness assumption on the Lipschitz constants,

(fdmi A~ Ndmf: T) = limy(f dm{ A--- Adrml : T) uniformlyin .

Moreover, (f,dmy A+ Admy 2 T) = limy(fidnf A--- Adrml : T) for all i, by the conti-
nuity axiom. By Moore’s lemma [DS58, 1.7.5, lemma 6], the diagonal limit exists and

(fdmy A---ANdmy: T) = im(f,dmy A - -~ Admy 2 T) = limg (f, drct A~ Admh 2 T) .

In particular, T is c-additive in f. Thus, for (iii), replacing f by 1z f, we may as-
sume 77; is constant on {f # 0} for some i. Appropriately scaling 77;, we may assume
Lip(7r;) < 1forall j. Seeking a contradiction, assume that there is a closed C C {f # 0}
and an ¢ > 0 such that [(dmy A---Adm: TL C)| > €. Since ||T|| is Borel regular
by proposition 1.1.7, theorem 1.1.9 (i) gives 6 > 0 such that ||T||(Cs \ C) < & where
Cs={xeX|d(xX)<5}.
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Letc = mjon {f # 0}. Define, for t > 0, functions ¢; : X — Rand ¢; : R — R by

"
g(x) = (1 - ?dist(x,C)) andci(s) = (s—t)* + (t—s)- where f_ =min(f,0).

Let
Ty = [{gsdm A -+ Admi_y Adrt Adrqg A+ Adm = T)|

where nf = cto(m—c¢)+c. Since go = 1 and ¢y = id, we know that Tpo > ¢. By (ii),
there exist 0 < t < s < J such that Ty; > €. (Note that Lip(c;) = 1.) Now, nf =con Cy,
and supp g+ C C;/2, 50 Ty = 0. But this implies

T =T — Tu < /Igs—gtl ITI < ITI(Cs\C) <,

since |gs — gt = s — g+ < s < 1. This is a contradiction.

Therefore, approximating f by linear combinations of 1¢, C C {f # 0} closed, we
obtain the statement (iii).

We establish a special case of the chain rule in (i): For ¢ € C!(R) N Lip(R), we have

<fd7'[1 AR 'dﬂ'i,1 /\d(lp(ﬁz)) AR /\dTl'k : T> = <fl/]l(7'[i) d?l'l AR /\dTl'k : T>

for all 7r; € Lip(X), f € By(X). Indeed, this follows from (iii) if ¢ is constant; if ¢ is
linear, the statement is trivial; hence, we have the equality if i is affine. For ¢ piecewise
affine, the equality follows from (iii). Suffices to apply lemma 5.2.10 to obtain the general
case.

Next, we prove that T is alternating in 77;. To simplify matters, assume that k = 2,
and 71y = 71, = 1. We need to prove (fdm Admr: T) =0. Let

1
0= —-¢(km) and Tkzﬁ(p(kn—i—f)

i

where ¢ € C®(R), ¢ =idonZ, ¢'(1+t) = ¢'(t) > 0forallt € R, and ¢’ = 0 on
[0,1]. Then |@(x) — x| < 1, so (0k) and (Ti) converge uniformly to 7, with uniformly
bounded Lipschitz constants (¢’ is bounded). By the above,

(fdop Ndt: T) :%-<f(p’(k7r)(p(k7r+%) :T)=0,

since ¢’ = 0 on [0, 3] . By (ii), we find (fdt Adm: T) = 0, so T is alternating.

Now to the general case of the chain rule in (i). For i a linear function, the statement
follows from the fact that T is multilinear and alternating in the 7r;. Then from (iii), we
find that it is also true if all components of i are simultaneously affine on each simplex
of a triangulation of R¥. The general case follows from lemma 5.2.10.

Now to the proof of the product rule in (i). Replacing Tby T L (dmp A --- Admy),
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we may assume k = 1. Let S = (f, 711)+(T) ; the identity reduces to
(d(g1£2) : S) = (g1 dgr : S) + (g2dg1 : S) forall g1,¢ € C'(R?) N Lip,(IR?)

such that g; = pr; on a square Q D (f,71)(X) D suppS. Let (7;) be regular family of
triangulations for Q, and set g = p7.(182). Then g.|A = a® pr; +b2 pr, +c2 on any
A € T;. From lemma 5.2.10, we find g, — g in W"*(Q); since 9j(g182) = gi on Q if
{i,j} = {1,2}, we find that

lime o SUpsc7- sup(x,y)eA(!gﬂx,y) —a2x| + |g2(x,y) - bfy\) =0,

so by (ii) and (iii),
(d(g182) : S) = lin% Z (aEAdx :SLA)+ <bgAdy :SLA)=(g1dg2:S) + (g2dg1:S),
Y AET,
which finally proves the theorem. O

Corollary 5.2.11. Let T € My(X) and f € Lipy(X). Theno(T L f) =0T L f—T L df.
Definition 5.2.12. Let Tj, T € My(X) . We say that T; — T weakly if

lim;(fdm:T;) = (fdm:T) forall fec Lipy(X), m= (my,...,m), m; € Lip(X) .

For any open subset U C X, the map T +— ||T||(U) is Ls.c. for the topology of weak
convergence on My (X). This follows from the equation (*x) in proposition 5.1.2, since
this gives a representation of the mass as the supremum of weakly continuous functions.
Definition 5.2.13. For any £F summable function f € L'(R¥,R), U C R¥ open, define
the total variation by

IVF(U) = sup{/f-divgod[,k

k
g (URY), |g| < 1} where divy =), 9;¢;.
j=1

The summable function f is called of bounded variation if |V f|(R¥) < co. The vector
space of BV functions is denoted BV (IR¥) . It is a real Banach space for the norm

Ifllev = Ifll1 + [V FI(RF) .

Theorem 5.2.14. For any T € Ny (IRF), there exists a unique function ¢ € BV(R¥) such
that T = [g] . Moreover, ||0T|| = |Vg| on open subsets.
Lemma 5.2.15. Let y be a continuous real linear functional on Bj,(RF) which is weakly

differentiable, i.e. there exists Vi € L} (RF,RF), such that

loc

(diveg : u) = — /(go :Vu)dLk forall ¢ € Cgl)(]Rk,]Rk) :
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Then there exists g € BV(RF) such that (f : u) = [ fgdLF forall f € By(RF).

‘)
Proof. Let x € CL™)(RF), 0 < x <1, [ xdLk = 1. Set xe(x) = e ¥ (e 1x) for x € RF,
¢ > 0. Define g:(x) = (xe(x —w) : ) . Then

/q)ggdﬁk = (fexq@:pu) forall ¢ € cﬁ“(le) ,

so (g¢) is bounded in BV(R¥), and g, - £¥ — u in the weak topology on B;,(IRF)’ . More-
over, the inclusion of BV(IRF) in L}, (R) is compact, so some subsequence of (g) con-

vergesin L} (RF) to ¢ € BV(RRF). O

loc

Proof of theorem 5.2.14. Define a continuous functional by
(fru)=(fdxy A---Adxg: T) forall fe B,(RF).

By the lemma, suffices to prove the weak differentiability of .
Let (¢;) be an orthonormal basis of R¥, and let 71;(x) = (x : ¢j) - ¢;. For ¢ € eV (RK),

we have
Qi@ - u)| = [{dpNdmry N -+ Ndmi_y Ndrtiga A+ Ndge : T)| < /|go|d||aT||

by the chain rule in theorem 5.2.8. This implies 4 = g - £F for some ¢ € BV(R), and
|Vg| < ||9T|| . Again applying the chain rule, we obtain [¢] = T . By a similar device as

in the proof of proposition 5.2.3, we find ||9T|| < |Vg]. O
Corollary 5.2.16. Let X be separable, T € Ni(X) . For any £* neglible Borel B C R¥,

|T L dr|[(7~'(B)) =0 forall 7 € Lip(X,RF).

Moreover, ||T|| < HF. (Here, we use the usual notation for absolute continuity, al-
though HF is usually not finite on bounded subsets.)

Proof. Let f € By(X). Then 7. (T L f) € Ni(IR), since 9(7t.(S)) = 71.(3S) . By theo-
rem 5.2.14, 71, (T L f) = [g] for some g € BV(IR¥). Then, x; denoting the jth coordinate
function on R¥,

(Flosn :TLdr) = Ly s TL (fdn)) = (In: ma(T L fdn))
= <1Ndx1/\---/\dxk:7t.(TL f)> = /Ngdﬁk:()

Since f was arbitrary, from proposition 5.1.2 we conclude that ||T L dr||(7~}(N)) = 0.

Finally, if H*(M) = 0 where M C X, then since HF is Borel regular, M C B where
B € B(X) is HF-negligible. Thus, H*(7t(B)) = 0 by theorem 2.2.2. By Borel regularity,
n(B) C N, for N € B(R¥) LF-negligible. Then M C 7w~ '(N), so ||T L dr|(M) = 0.
Since 7t was arbitrary, proposition 5.1.2 shows that || T||(M) = 0. O
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5.3 Rectifiable Currents

Definition 5.3.1. Let T € My(X). Then T is called a rectifiable current if its mass ||T||
is k-rectifiable. A rectifiable current is called integer-rectifiable if for all ¢ € Lip(X, RF),
and any open U C X, @.(T L U) = [¢] for some LF-summable and integer-valued
® : R* — Z. Finally, a rectifiable current is called integral if it is integer-rectifiable
and normal. Denote the spaces of rectifiable, integer-rectifiable, and integral currents,
respectively, by

Ri(X), Z(X), and Ii(X).

The two former spaces are closed in M (X), whence the latter is closed in Ny (X) .
Remark 5.3.2. If T € Ni(X) and ||T|| is concentrated on a countably k-rectifiable set,
then corollary 5.2.16 shows that T € Ry (X).

Theorem 5.3.3. Let T € M(X), and assume X that is complete and contains a dense
subset whose cardinality is an Ulam number (e.g. X separable and complete).

(i). Wehave T € Zy(X) if and only if (1;; : T) € Z for all open subset U C X.
(ii). We have T € Zy(X) if and only if ¢ T € Zop(R) for all ¢ € Lip(X,R).
(iii). If X =R", then T € Ry(X) if and only if po T € Ro(R) for all ¢ € Lip(X,R).

Proof of (i). The condition is certainly necessary for integer-rectifiability. Assume that it
is given. Then let

A={xeX||T|B(x,r) > 1forall r>0}.

Clearly, A is closed. Since ||T|| is a finite measure, for any r > 0, A is covered by finitely
many balls of radius . Hence, A is compact. By essentially the same argument, A is
also discrete. Thus, A is finite. Of course, T . A € Ry(X), and by continuity of T, we
find T L A € Zo(X) . Suffices to show that T is supported on A. If x € X\ A, thereis a
ball B C X \ A such that ||T||(B) < 1. Then, for any open U C B, |(1y; : T)| is a natural
number less than 1, and thus equals 0. By proposition 5.1.2, ||T||(B) =0. If K C X\ A
is compact, then ¢ = dist(X \ A,K) > 0. Since K is contained in the union of finitely
many balls of radius < §, we find ||T||(K) = 0. Since ||T L (X \ A)|| is concentrated on
a o-compact by corollary 1.2.6, we find that T=T L A.

Proof of (ii). Again, the condition is clearly necessary, and we assume that it obtains.
Let U C X be open, and denote ¢ = dist(u, X \ U) . Then ¢ € Lip(X, R) by the triangle
inequality, and

Z > (1]0,00[ t@eT) = <1q,>0 :T)=(1y:T),

soby (i), wefind T € Z(X).

Proof of (iii). The statement follows from the following lemma. U
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Lemma 5.3.4. Let u be a signed measure on R¥, ie. 4 = v L f where v is a Radon
measure and f : R - Risa locally v summable function. Furthermore, define

k
frz(y) :nl.f‘flxﬁfi |xi—yi| forall y e RF, Q =QF x QL.

Then y is O-rectifiable (i.e. concentrated on a countable set and absolutely continuous to
HC) if and only if this is the case for the image measures fy#(p), forall (x,&) € Q.

Proof. The condition is necessary, so assume it given. By subtracting its point masses,
we may assume that y has no point masses. Seeking a contradiction, assume that y is
not O-rectifiable, and let 0 < ¢ < k be minimal with the property

| (x0 + RN\ >0 forsome I C {1,...,k}, #I =k -1, xo € RF.

Since u has no point masses, ¢ > 1. Possibly replacing u by —pu, there exists € > 0 and
x1 € QF such that

u(M) >3 where M={yexo+R'||ly—xllo<1}.

Note that M only depends on the components x1;, i € I, of x;, so we may choose xy;,
i € I, arbitrarily close to xo; without modifying M. Let k € IN be sufficiently large such
that

u|(Nk) <e where Ni= {y € R"|disto(y, M) € ]0,2[} .

The existence of such a k follows since M has finite measure, and M = (;2;(M U Ny) .

Now, modify x3; such that max;e|xo; — x1;| < % . Define ¢ € Qk>0 by ¢; = kforic 1
and ¢; = 1 otherwise. Then

M cC f%([0,1)) € MUN;.
Indeed, fory € M,
Ciolxi—yil =k |xu—xul <1 if i€l,
and &; - [x1; — yi| < ||y — x1]J < 1 otherwise. For fy, «(y) < 1andy ¢ M, we have
lyi — xoi| < |yi — x1i| + |x1 — x0i| < % forall ieI.

Moreover, |y; — x1;| < 1foralli ¢ I,soz € R¥, defined by z; = xp; fori € I,and z; = y;
foralli ¢ I, is contained in M. Thus, ||y — z||o < %, and y € Nk.

Let A C R be countable, such that fi = f, (i) is concentrated on A. For any
reR, f. }g(r) is contained the union of finitely many affine hyperplanes. Thus, by the
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minimality of ¢, we conclude [u|(M N f,_ ,16 (r)) = 0 for all r. Therefore,

1(10,1]) = [ul (fr, (AN [0,1))) < [ul(Ne) <ce.

On the other hand,

A0,1]) = u(f £ (10,1))) = (M) + p(f5 £ (10,1]) N Ni) > p(M) = |p|(Ny) > 2¢,

a contradiction. O

Theorem 5.3.5. Let T € Mi(X). Then T € Ri(X) (resp. T € Z(X)) if and only if
there exist compacts K; C R¥, functions 9; € L!(IR¥,R) (resp. 8; € L' (R, Z)) such that
supp 9; C K;, and Lipschitz maps ¢; : K; — X, such that

k=0 k=0
Moreover, if X is the dual of a separable Banach space, T is the limit in My (X) of normal
currents.

Proof. The condition is clearly sufficient for the rectifiable case. For the integer-rectifiable
case, it suffices to check that S = @.[?] is integer-rectifiable for ¢ € Lip(K, X), K C X
compact, and ¢ € L'(RF,Z), supp® C K. Rectifiability is clear, and for any open
UC X,y e Lip(X,RF), setting ¢ = o ¢,

(Fdm: pa(S L u)):/ (F o ¢) det(rr o0 §)' 9 dLk

Kne~1(U)

= .det 77’ -det¢’9dLk
Km¢—1<u>(f et7w') o¢-dete

= /(K) ufdetn/,(ﬁ.sgndet¢/)o¢—l,N((P’Kmq)—l(u),u)dﬁk’
P(K)N

by the change of variables formula (corollary 4.1.6) and uniqueness of measure in R
(theorem 2.4.3). Hence, o(S | U) = [(¢-sgndetd’) op~1 - N(¢|KN e~ 1(U), )], and
sufficiency also obtains in the integer-rectifiable case.

Conversely, let T be rectifiable, and let S C X be a countably k-rectifiable subset on
which ||T|| is concentrated. By lemma 4.2.3, S\ U2, ¢;(K;) is H*-negligible for some
compacts K; C R, some bi-Lipschitz maps f; : K; — f;(K;) = S; C S, such that S; are
pairwise disjoint. Let T; = (pj’.l( T L S;). Then ||Tj is absolutely continuous to H¥, by
theorem 2.2.2. By theorem 1.9.5, the functional y; on B, (RF), defined by

(fru) =(fdxy A---Ndx, : R;) forall f € By(RY),

is a signed measure, y; = 0; - Lk, for some 8 e L! (RF) vanishing outside K;. By the
chain rule in theorem 5.2.8, we find R; = [¢;]. Then T L S; = ¢;4[9;] follows by locality
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in theorem 5.2.8, and the assertion in the rectifiable case follows from disjointness of S; .
In the integer-recitifiable case, we may assume 0; integer-valued by definition.

If X is the dual of a separable Banach space, we may assume that the ¢; are defined
on all of R¥. Replacing ¢; by ¢;(Lip(p;) "'Ls), we may assume Lip(¢;) < 1. Fixe > 0
and choose 6; € BV(RF), [|8; — 6;] < i - Then S = }72 @je[6;] is the limit of normal
currents, and

(o] . [o°] o8] €
M(T - §) < Z;)Llp(%') -M([%;1 - [6,]) < Z%)/Hl?j! — 6l £* < Z(;zﬁ =&,
= = =
proving the assertion. U

Proposition 5.3.6. Let T € Ry(X), and define St = {O,(||T||,w) > 0}. Then St is
countably k-rectifiable, ||T|| is concentrated on St, and for any Borel S C X on which
| T|| is concentrated, H*(St\ S) = 0.

Proof. Let S be countably k-rectifiable and 6 : S — [0, 00[ be H* L S summable, such that
|T|| = ¢-H* L S. By the non-trivial density result [Kir94, th. 5.4.], #(x) = @ (|| T||, x)
for H*-a.e. x € S. Thus,

H (ST \ S) =H*(Sr\ (SN{6>0})) =0,

proving the assertion. O

Definition 5.3.7. The previous proposition allows us to define the size of T € Ry (X) as
S(T) = H¥(St).

5.4 Normal Currents and Slicing

In what follows, we shall always assume X to be complete, and to contain a dense subset
whose cardinality is an Ulam number (e.g., X separable and complete). This assumption
guarantees that any finite Borel measure on X be concentrated on a c-compact, by corol-
lary 1.2.6.

On our way to the Plateau problem, we exhibit various compactness properties of
different classes of currents, the first of which the following equicontinuity of normal

currents.

Proposition 5.4.1. Let T € N (X) . Then, for f € Lip,(X) and 03, 7; € Lip1(X), we have

k

(Fdo 1) = (a1 < 3| [1F- (o=l aloT +Lip(r) - [ Joi=sld]T] .

i=1

In particular, bounded subsets of Ny (X) are equicontinuous on Lip;(X) x Lip; (X)*.

Proof. It suffices to prove the assertion for bounded ¢; and 7;, since the general case then
follows by restricting T to sets on which 0;, T; take their values in [k, k+ 1] for k € Z.




88 5. Currents

So, assume 07, T; bounded, and set ¢’ = (02, ...,0%) . Then

(fdo:T)=(fdo' :TL doy) = (fdo’: 9T L o1 — (T L 01))
= (fordo’ : dT) — (ndf Ndo' : T),

by corollary 5.2.11. We obtain
[(fdo:T)—(fdn Ado' : T)| < / |f - (o1 — )| d|[oT|| —|—/ lon — .| d|| T,
X supp f

because ((71 —o1)df Ado’ : T) = 0for o3 = 0 on X \ supp f, due to locality. Applying
([

the alternating property and the triangle inequality, we obtain our claim.

Compactness of Normal Currents 5.4.2. Let (T;) C N(X) be a bounded sequence. As-
sume that for every j € IN, there exists a compact K; C X, such that

(ITi]l + [IPT) (X \Kj) < = forall i € N.

Then a subsequence of (Tj) converges to T € Ni(X) such that ||T|| 4 [|0T|| is concen-
trated on U2 K; .

Proof. Passing to a subsequence, we may assume there are finite Borel measures y and v
on X such that y = lim;||T;|| and v = lim;|0T;|| weak™ in C;,(X)’. Since (u +v)(X\ K;) <

% , we find that y + v is concentrated on U2 K; .

We claim that (T;) has a pointwise convergent subsequence. By a diagonal argument,
it suffice to find for each p € IN'\ 0, a subsequence & = a,, such that

limsupanfdrc Tagn) — T,x(m)ﬂ < forall fdm € DX(X), f,m; € Lipy(X), |f| <p.

=W

To that end, let x € Lip1(X), 1k, , < x <1.Bylocality, T, - Tj L x = T; L. (1 —X),s0

1

N(T =T 1) <N(T L (X\Kae)) < 5

To establish our claim, it suffices prove that for a convenient a, (fd7 : T, L x) con-
verges for all f, 7t; € Lipq(X).

Let Z = Lip; (U;-";O K;) . Then Z , endowed with the topology of uniform convergence
on compact subsets, is a separable metrisable space. Select a countable dense subset
D C Z, and a subsequence &, such that (fdr : T,y L x) converges for all f,r; € D.
Let f, 7t; € Lip1(X) . Then, for any h,0; € Z, proposition 5.4.1 gives

limsup,,, | (fd7t : Typ L X — Tamy L X)| < 2limsup, [(fx d7: Ty) — (hxdo : T,)|
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k
<timsup, | [2lf =HAITI+ Y [ (17141 = el a7+ |2 |
=184

k
</}(!f—h\dy+§[/su (If1 +1)|m — o] dv +

|7t — 0 dﬂ]
PP X supp x

Approximating f, 7t; uniformly on compact subsets of U;2, K; by h, 0;, our claim follows.

Now define (w : T) = lim,(w : Ty,) for all w € D(X). Then T is a (k + 1)-
linear and local current, such that T and oT have finite mass ||T|| < u, ||9T| < v. We
need to check the continuity axiom (ii). By finiteness of mass, it suffices to check it for
f € Lipy(X) of bounded support. Then proposition 5.4.1 gives

k
[(fdm:T) — (fdo: T)| < Z[/’f. (7t; — 03)| d + Lip(f) - / ppf\m —Ui|v]
i=1 su
for all 7;, 0; € Lipy(X) . This immediately gives the continuity. ]

5.4.3. The next step is to introduce the so-called slicing technique: Given a k-dimensional
normal current T, its contraction T L dm for w : X — R™ can be represented as the
integral of (k — m)-dimensional normal currents (‘slices’) concentrated on the fibres of
7t . This technique is important for proofs by induction on the dimension of currents.

Slicing Theorem 5.4.4. Let T € Ny(X), let L C X be a o-compact on which T and 0T
concentrated, and let 7 : X — R™ be Lipschitz, where m < k.

(i). For all x € R™, there exist (T, 77, x) € Ny_,,(X), such that (T, 7, x) and 9(T, 7, x)
are concentrated on LN 7w~ 1(x), x — ||(T, 7, x)|| is weakly L™ measurable,

IT L dn||:/ (T, 70, x)|| £"(x) weaKlyin K(R™), (%)

RW

x — (T, m, x) is weakly L™ measurable, and for all ¢ € IL(R™),

TL (pormdn) = / (T, 7, x)p(x)dL"(x) weaklyin MFy(X).  (+%)

m

(ii). Whenever L’ C X is a o-compact, and Ty € M;_,,(X) are concentrated on L’,
satisfy (xx*) with Ty in place of (T, 7T, x), and x — M(Ty) is L™ summable, then for £"
ae.x € R", T, = (T, m,x).

(iii). Form =1, then for L' a.e.x € R,

TL (Lacneydm)
y—x

(T, 7, x) = limy_.x+ =@T)L {m>x}—0o(TL {m>x}).

The proof requires a series of lemmata. The first of these is conventionally termed the

‘localisation lemma’.
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Lemma 5.4.5. Let T € N(X) and ¢ € Lip(X). Let S; =T L {¢ >t} fort € R and fixa
o-compact L on which T and 9T are concentrated. Then, for Llae teR,

d _ d
OT) L {p >t} =38 = (St L dg), [9S:[|(97 (1) < T L dol{p <1},

and S; and dS; are concentrated on L.

Proof. Let p = || T|| + [[dT||. Fix disjoint compacts (K;) with u concentrated on U; K;
Define

gi(t) =u(Kin{p <t}) and g(t Zg] <t}

Since g, gj,and t — f(t) = || T L dg¢||{¢ < t} are increasing, the set

Tz{telR’g()g]()f()eXlst g'( Zé’] }

has full £! measure. Fixt € T, and lete;, — 0. Let f, : R — [0,1] be piecewise
affine, such that 1, of < fr < 1|t Thus, e/fy(s) = s —t fors € [t,t + ] . Define
R, = gj TL (1{t<q)<t+€/} d(P) - Then

1
by corollary 5.2.11 and locality. Since 2w = (1,1, wo,...), 9% = 0 on currents. Thus,
1
OR =T L (fro9) = —aT L d(fiog) = ~ T L (Lycperrey)

by essentially the same argument as above. Let K/ = [J;< j Ki. Then

W1
(IRl + YR AN (XA K) = = p{t <o <t+ed\K) <Y gilt)
i~
Hence, by theorem 5.4.2, extracting a subsequence, (R;) converges to some R € N;_1(X)
such that [[R|| + [[9R| is concentrated on [J;K;. Since fyo ¢ — ¢ in L'(y), we find
R=09TL {9 >t} —0o(TL {¢ > t}),and the limit is independent of the subsequence

chosen, so R = aSt L dg. Moreover,

(T L {g > t)lI(7' (1)) = IR[[(¢7" (1)) < M(R) < liminf M(R,) < f'(t)

since mass is 1.s.c. with respect to pointwise convergence. U

5.4.6. The second lemma required is an improvement of the representation of mass in
theorem 5.2.8. To that end, recall that for Borel measures y, ii; one says that u is the
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supremum of (y;)jej, 4 = Vjej pj, if forall B € B(X),

;wB>=sup{z:uxB»

j€]

(Bj)jey Borel partition of B} .

Lemma 5.4.7. Let A C X be o-compact. There exists a countable D C Lip;(X) N Lipy(X)
which is dense in the sense that any bounded 1-Lipschitz function is the uniform limit
on compact of a uniformly bounded sequence in D, such that

IT|| = \/{ITL dr| | m; € D*} forall T € My(X) concentrated on A .

Proof. Let A = |J; K with K; C X compact and write X = Lip,(X) N Lip1(X). From
theorem 5.2.8, the equation is valid for any current T, with X in place of D . For each
j € N, we may choose a countable subset D; C X such that f € X is the uniform limit
on K; of a bounded sequence in D;. Set D = |J; Dj and fix T € M, (X) concentrated on
A . Then it suffices to prove that

ITL dr||L K;<p;j=\/{IITL dt| | 5 € D;} forall me X*.

Let f € By(X) vanish outside K;, and let (71}*) C D;) be uniformly bounded, such that
mi" — m; uniformly on K; . Let

() = infyeg () () and wi= [ (mly) +dloy)

Then 7y, 7" € Lip1(X), 1" = 7}" on Kj, and /" — T; pointwise. By locality and conti-

nuity,

(Fdr:T) = (fdr: T) = limp(f dv™ : T) = limp (f dr™ : /\f\dy]

This implies our claim and thus, the lemma. O
Proof of theorem 5.4.4. First,letm =1,andset Sy =0T L {m > x} —9d(T L {7 > x}).

By lemma 5.4.5, we have S, = c;ix T L (1{zsyydrr) for L' a.e. x € R. This implies that

S, is concentrated on L N 71~ (x), and moreover, for all w € D*(X),0< p <k,
M(S: | w) < %HT L (wAdm)||({r<x}) forflae x€ccR.
Hence, by theorem 3.2.1,
/M(Sx L w / IT L (Adm)|({m<x})dx <M(T L (wAdr)). (x%%)

We now check (xx*) in this case. So, let ¢ be continuous of compact support, and set
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v(t) = ['. ¢dL'. Note

(y)
[ o war= [ p(x)dx = y(x(y).

Thus, for fdt € D¥-1(X), we obtain (since 7' = @)

/]R<fd1':Sx>(p(x)dx:/]R<1{,T>x}-fdr:E)T)q)(x)dx—/}R(l{Dx}df/\dT:T>qo(x)dx
= (yom: fdt:9T) — (yomdf Ndt:T)
= (fd(yom)Ndt:T)=(f - (pom)dn Adt:T)
= (fdt:TL (pom)dn),

which is just (x*). In particular,

k—

1
<HLiP(Tj)'/ |f|d||S|| dx .
i=1

(fdr:TL dn)| = '/(de:SxMx

—

Hence, | T L drt|| < [||S«||dx . Together with (x  x), this implies the weak measurabil-
ity of x — ||Sy|| and (x). This completes the proof of existence in case m = 1.

Assuming the existence statement is true for some 1 < m < k—1, we intend to
deduce it for m 4+ 1. To that end, write 7 = (711, @) with ; € Lip(X), and x = (t,y).
The statement being true for m and for 1, we may define T, = (T, my,t) and Ty =
(Ty, 7T, y) . By assumption, we have

//||Txudydt:/un L dA||ldt = |T; L (dm AdR)| = |T L drl).

The £™+1-measurability follows from Fubini’s theorem 1.6.2. Similarly, for ¢ = ¢ ® ¢
where ¢; € K(R) and ¢ € K(R™),

[ Teoax = [[ Tuyo) dyortydt = [T (gomdm)gu(t)ds
=TL ((prom)-(pon)dm Ad) =T L (pomdn).

Since K(R) ® K(R™) is dense in K(R™*!) for the topology induced by L!(IR™), the
equation (x*) follows. Hence, we have proved existence.

As to uniqueness, fix f dt € D¥"(X). Let o be a Dirac sequence. Then (x*) gives
(FdT: Te) = lime_o,. /(fdr L Ty)0e(y — x) dy = lime o, (foe(m — x) dT Adm: T)

for £ a.e. x € R™. Hence (w : Ty) is determined a.e. uniquely for fixed w = f dt. Now
fix D as in lemma 5.4.7, applied to the o-compact A = LUL’, and let N C R™ be an L™
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negligible Borel set such that
(fdt:T,) = (fdt: (T, m,x)) forall x € R"\N, f € Lipy(X), T € D*.

Now, ||(Ty — (T, 7t,x)) L dt|| = 0 for all T € D* implies || T, — (T, 7t,x)|| = 0 by the
lemma. Hence the assertion. O

5.4.8. Using approximation by normal currents, we extend the slicing operators to recti-
fiable currents.

Slicing Theorem for Rectifiable Currents 5.4.9. Let T € Ry (X) (resp. T € Zx(X)) and
m € Lip(X,R™), 1 < m < k. There exists (T, 71,x) € Ri_,(X) (resp. (T, 7, x) €
Ti—m(X)) concentrated on St N 7w~ 1(x), such that equations (x) and (xx) from slicing
theorem for rectifiable currents 5.4.4 hold,

(Tl B,t,x) =(T,m,x)_ B forall Be B(X),

and

[sr, ) xS HLlp 7)) - S(T) .

Moreover, whenever T, € M;_,,(X) are concentrated on L N nfl(x) for some o-
compact L C X, satisfy (xx), and x — M(Ty) is L™ summable, then T, = (T, 7t, x) for
LM™ae x€R™.

We require the following lemma.

Lemma 5.4.10. Let A C X be o-compact. There exists a countable family ¢/ of open
subsets of X such that for all open U C X, there exists (U;) C U such that 1y = lim; 1y,
in L! () for any finite Borel measure y concentrated on A .

Proof. Write A = U; K; with K; C X compact. Let D be as in lemma 5.4.7 and let
U={{n>3}| meD}. LetU C X be open. Then ly = sup; fj where fj;1 > fj >

are 1-Lipschitz functions. Let g; € D, |f; — gj| < 7 on K;. By Lebesgue’s dominated
convergence theorem 1.5.7,

1u:hmj1{fj>%} in L'(u)

whenever y is concentrated on A. O

Proof of theorem 5.4.9. First, assume X = E* for E separable Banach space. Then theo-
rem 5.3.5 shows that there exist T; € N (X), such that T = Y2, Tj in My(X) . Thus

/ZM ((Tj, ,x)) dL™(x HL1p ;) Z(;) (Ty) :ﬁLip(m)-M(T) < o0
j= i=

Thus, for L™ a.e. x € R™, Z]-<T]-, 7T, x) converges in My_,,(X) to some (T, 7, x) . Then
(T, 7, x)|| < HK="™, (T, x) is concentrated on St N 7w~ (x), and equations () and
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(*%) hold. In particular, (T, 7, x) is rectifiable. In the general case, T is concentrated on
supp T, which is separable by theorem 1.2.5. Hence, the latter can be embedded into

¢® = (£'), and we obtain the slices by applying the isometric embedding.
Note that (T, 7, x) is concentrated on St for L™ a.e. x € R. Hence, from proposi-

tion 5.3.6 and theorem 2.4.5, we deduce
k—m -1 WinWk—m = .
/S((T, 7T, %)) dx = /H (Sr 0t (x)) dx < 2 T Lip()S(T) ,
k ik
j=1

which gives the size inequality and thus establishes existence in the rectifiable case.

Uniqueness follows as in theorem 5.4.4. This implies, for fixed B € B(X),
(TL B,mt,x) =(T,7,x)_ B forL™ae xecR".

Let U be as in lemma 5.4.10, applied to St. There exists an L™ Borel set N C R" such
that (T L U, m,x) = (T,7,x) L Uforallx € R"\ N, U € U . Then the assertion follows
for any open set, and then, by Borel regularity, for any Borel set.

Remains to treat the integer-rectifiable case. Suffices to consider T = @.[?] for ¢ €
L!'(RK, Z) of compact support. From the construction of slices in theorem 5.4.4, we find
that ([d], r, x) are integer-rectifiable, hence so are Ty = @o([0], 71, x). We apply the

uniqueness statement to deduce (T, 71, x) = T for L™ a.e. x. O

5.4.11. The following proposition on iterated slices and projections of slices follow from

uniqueness.

Proposition 5.4.12. Let T € My(X) be rectifiable or normal, 1 < m < k, and fix a map
7 € Lip(X, R™).
(i). Forany 1 < n < k —m and any ¢ € Lip(X,R"), we have

(T, (m, ), (ty)) = (T, m,t),9y) forlL™"ae (ty)eR"™".

(ii). Let T be rectifiable. For any n > m and ¢ € Lip(X,R"~™),
Go{(@, )eT,p,x) = @o(T, T, x) for L™ ae. xe€R",
where p : R" — R"and g =1 —p : R" — R"" are given by

p(x) = (xi’l—M/ Xn—m+1s- - -/xn) fOI' all X € ]Rn .
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5.5 Closure and Boundary Rectifiability Theorems

5.5.1. As before, we assume that X is complete and contains a dense subset whose cardi-
nality is an Ulam number. The following theorem characterises the (integer) rectifiability
of normal currents through the (integer) rectifiability of their slices.

Theorem 5.5.2. Let T € Ni(X) . Then T € Ry (X) if and only if for all 7w € Lip(X, R¥),
(T, m,x) € Ro(X) for LFae. xecRF. (%)

Similarly, T € I;(X) if and only if condition (x) holds for Iy(X) (or Zy(X)) in place of
Ro(X).

5.5.3. Our strategy of proof is the following: Show that the slice map x +— (T, 7, x) is
a metric BV function (to be defined). This implies that ||T L dr|| is concentrated on a
countably k-rectifiable set. A separability argument (in fact, lemma 5.4.7) then gives the
corresponding statement for || T'||, and this implies the rectifiability of T. To make this
strategy rigorous, we need to establish the necessary facts on metric BV functions.

5.5.4. A metric space S is said to be weakly separable if there exists a countable family
® C Lipy(S) NLip1(S) such that

d(x,y) = sup,cqle(x) — @(y)| forall x,y €5.

Fix a weakly separable metric space S, together with a separating family ®. Then a
function f : R¥ — S is said to be of metric bounded variation, if for all € ®, @ o f is on
locally bounded variation, and

1951 =V, o/ Voo /]

is a finite Borel measure. We denote the set of these functions by MBV(IR¥, S) . We shall
see presently that this definition is independent of the choice of ®.

Proposition 5.5.5. Let f € MBV(IR¥, S) and ¢ € Lip,(S) N Lip1(S). Then ¢ o f is locally
of bounded variation, and |V (¢ o f)| < ||Vf]| . In particular,

HVfH = \/t/JeLipb(S)ﬁLipl(S)|v(llJ Of)’ *

Proof. First, letk = 1, I C R an open interval, and ¢ : I — R a bounded function. Let
L¢ be the Lebesgue set, i.e. the set of points where the precise representative of g exists
and equals g, cf. theorem 1.9.9. Let |Vg|(I) be the total variation of g if g is locally of
bounded variation, and oo otherwise. Then

p—1
V8I(1) = sup{ Llsltien) ~ (6] [ 10 << <1y, i€ 1\ N}
i=0
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whenever N is a Lebesgue zero set containing the complement of L, . (This is the so-
called essential total variation.) This follows by similar arguments as in the proof of
theorem 3.2.1.

In particular, the set of point masses of |V (¢ o f)| is £! negligible for any ¢ € ®. Let

N = I\ Lyog U, o [1\ Lyos ULt € L[|V (@0 £)] (1) > 0}]

Thus, because 1 is 1-Lipschitz,

[(@o f)(t) = (o fl(s)| < d(f(£), f(s)) = supl(po f) () = (9o f)(s)| < VI (s ¢])

pcd

foralls < t,s,t € I\ N. Thus, [(yo f)|(I) < ||Vf|[(I). Standard approximation
arguments using Borel regularity entail the claim in case k = 1.

Now, let k > 1. For any function g : R¥ — R of locally bounded variation, and any
e €Sl x cel,define

Sex(t) =g(x+te) and Vg¥(B) = |Vge.|[{t € R |x+tec B} forall Be B(R¥) .
Moreover, let

IV.f|(B / Ve¥(B)dH L (x) forall B € B(R).

Then Fubini’s theorem 1.6.2 and the invariance of £¥ under translation and orthogonal
transformations, which follows from £f = H* and the corresponding statements for
H* (theorem 2.2. 4) show that for all relatively compact open subsets U C R and all

9 eCl(R), 9| <
L /@;ux)g(” te)g' (1) dt a1 (x) = [ g(x)g'((e: ) £4(x) < |Vgl(U),
where U, = (x + Re) N U . By standard approximation arguments, we find
V8l =V, 1| Ves| -
By the case k = 1, we have Ve V(peq) (pof foralle € 8" 1 x € el.Fore e S 1,
Velyo f)l = [ Va1 ) = [V, Vel dH ()
=V oo [ Ve M 0 =V, [ Velgo I < V(g ],

where we have used c-additivity and monotone convergence to exchange \/ and the

integral. Taking the \/,cg:-1, the assertion follows. O
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5.5.6. Consider the space Lip,(X) . It is a Banach space, endowed with the flat norm

F(¢) = ||l¢|l~ + Lip(¢) forall ¢ € Lipy(X) .

Dually, the space of 0-dimensional currents My(X) can be endowed with the flat norm

With this norm, My (X) is weakly separable whenever X is weakly separable.
In fact, if X is weakly, separable, then My (X) is isometrically embedded into Mg (£*) .
Furthermore,

U,n19 € Lips(R") | F(9) <1}
is a norm-determining subset and separable subset of the unit ball Lip, (£*) .

Rectifiability for MBV 5.5.7. Let X be weakly separable, let S = My (X) , endowed with
the flat norm, and let T € MBV(IR¥, S) . Then there exists N € R, £K(N) = 0, such that
for all compact K C X,

Rk = U, cpen{¥ € K[ I Tl () > 0}

is contained in a countably k-rectifiable subset of X .

5.5.8. The proof requires a version of the mean value inequality. To that end, for any
real-valued function F defined on the bounded subsets of X, let

F(B(x,r))

T forall x e X
Wir

M(F)(X) = Supr>0

define the maximal function of F .

Lemma 5.5.9. Let S be weakly separable and f € MBV (IR, S) . Define

LE(B(x, ||lx —ylD) N B(y, [lx —yl))
lx =yl

cp = for all x,yE]Rk,x;éy,

a constant depending only on k. Then there exists N C R¥, £¥(N) = 0, such that

d(f(x), f(y) < ‘;—:(M(van)(x) +M(IVFID()) - lx—y[ forall x,y € R*\N.

Proof. Let g : R — R be locally of bounded variation and write Ly for its set of Lebesgue
points, cf. corollary 1.9.12. By apply the change of variable formula (corollary 4.1.6) to
the bi-Lipschitz function [0,1] x S¥=1 — B(x,7) : (t,e) — x + tre, we obtain

1 X)— 1 ! x) — q¢(x +rte
/B(x,r)‘g()g(y)’dﬂ((y)_ rk/o /Skltl_k‘g( ) —8(x+ t)de_l(e)dt

wyrk |x =yl Wy tr
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< [ VBB 4y < m(9ghy )

wi(tr)

forevery x € Ly. Letx,y € Ly, x #y,and setr = ||x — y||. Then

1g(x) —8(y)| 1 / !g(x)—g(y)ldﬁk(z>
B(x,r)NB(y,r)

T rkey T

1 1g(x) —g(z)| | 8(z) —gW)I] , on
/B(x r)NB(y,r) |: * ac (Z) ’

= ke (Rl Iz =yl

because ||x — z||, [|[y — z|| < r. We obtain

Wi

o [MUVEDN@) +M(VED®)] - flx —yll.

g(x) —g(y)| <

The assertion follows by letting ¢ = @ o f, ¢ € ®, where ® is any countable separating
family for S, and defining N = Ugyeq R\ Lyof - O

Proof of theorem 5.5.7. Apply lemma 5.5.9 with S = My(X) to obtain a negligible set
M C R¥ and define N = MU {M(||VT||) = oo}. Let K C X be compact, fixe,é > 0,
and let

Ags = {M(IVTI) < £} 0, {x € RN Tl () > & = ITl(B(w,39) \y) < §}

and
Ry = {x €K ’ 3]/ € Ay HTXH(]/) = 8} .

Then Rk = U, s-0 Res, and since it suffices to consider a countable subfamily of the sets
Res , it suffices to prove that these are contained in countably k-rectifiable subsets of X .

So let B C R be of diameter < 6. For x1,x2 € B, and y1,y2 € Aes, | Ty, || (vi) = €,

we claim
3Ck((5 + ])

€3
In fact, letd = d(x1,x2) . Let¢ € Lip1(X), 1 < ¢ < d, suchthat¢ = d(u, x1) on B(x1,d),
¢ = 0 outside B(x1,25) . Then

d(x1,x2) < lyr = v2l| -

ed
2Ty )| < || T, || <
0Tl < [, oldITy ] <5

and q
€
(@ Tyo)| = [{d: Typ)[ = [{d = ¢ : Ty,)| > ed — =
Hence,
3 3(d+1 3cr(d+1
) < 2 fig: ) — (o5 Tl < 2 p(n, - < 3Dy
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by the inequality from the lemma and because the maximal function is less than 5- . This
proves the claim.

By our assumptions on A,;, the map f : y — x is well-defined on a subset of A,
and surjective onto B. By our claim, it is Lipschitz. Since X is weakly separable, f can
be extended to a Lipschitz function R¥ — ¢* containing B in its image. Hence, B is
contained in a countably k-rectifiable subset, and by weak separability, we find that this

also true for R, . ]

Now we can prove our theorem on the rectifiability of normal currents.

Proof of theorem 5.5.2. Let T € N(X) . Then T is concentrated on a separable subspace,
so by locality, we may assume that X is weakly separable. Let S = My(X), endowed
with the flat norm. We contend that x +— T, = (T, 7, x) is contained in MBV(RF, S) . It
is sufficient to do this under the assumption 7; € Lip; (X) .

Lety € ctV (R¥) and ¢ € Lip,(X), F(¢) < 1. By the defining equation for the slices,
the chain rule, and corollary 5.2.11,

(_1)1;1 /<§0 : Tx)9ipp(x) dﬁk(x) = (—1)1'71(@ <0jporm:TL dm)
= (pd(pom)Ndft;: T) =(@-pom:9T) — (pomdp Ndr; : T)
< [lponla(iT]+[ar])

where dft; = dmy A --- Ndmi_qy Admig A--- Admy. Hence, x — (@ : Ty) is locally of
bounded variation, and x — T, lies in MBV(le, S) with

IVTell < k- ([IT]| + [19T])) -

Now for the rectifiable case. By theorem 5.4.9, the condition stated in the theorem is
necessary. Conversely, let L C X be a c-compact on which T and dT are concentrated.
Fix 7t € Lip(X, R¥). By theorem 5.5.7, there exists a negligible N C R* and a countably
k-rectifiable R,; C X containing

Useren, v € LI T, 2) [ () > 0}

Then

IT L dn[(X\Rx) = T L dr|(L\Rz) = ./IRkH<T,7TIX>||(L\Rn)dx=0,

since, as follows from normality, ||(T, 7, x)|| < H°. Hence, T | dr is concentrated
on R;. By lemma 5.4.7, T is concentrated on a countably k-rectifiable subset. Since
| T|| < H* by normality, we have T € Ry(X).

Necessity in the integer-rectifiable case also follows from theorem 5.4.9. Conversely,
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for any open U C X and any 7 € Lip(X,R¥), we have
(me(T L U),id, x) = me(T L U, ¢,x) = 7 ((T, ¢, x)) € Zo(R) .

But the slices of 7. (T L U) = [¢] € N(RF) with respect to id are just ¢(x)d, . Hence
the integer-rectifiability of its slices immediately implies 7to (T L U) € Zx(RF), by theo-
rem 5.3.3 (i). Thus, T € Zx(X), and by normality, T € I;(X). O

We come the formulation of the all-important closure theorem.

Closure Theorem 5.5.10. Let T, (Tj) C N(X) such that T = lim; T; pointwise. If T; €
Ri(X) and

sup]»N(Tj) +8(Tj) < o0,
then T € Ry (X). If T; € It(X) and is bounded in N¢(X), then T € I;(X).
We need the following lemma in the theorem’s proof.
Lemma 5.5.11. Let T, T; € Ni(X) such that (T;) is bounded and converges pointwise to T
and fix 7t € Lip(X) . Then, for Llae. t € R, thereexistsa subsequence & = &y, such that
((Ta(j), 7, t)) is bounded in Ny_1(X) converges pointwise to (T, 7, t) . Moreover, if the
Tj are rectifiable and (S(T})) is bounded, then a can be chosen such that (S((T,;), 77, t)))
is bounded.

Proof. First prove the existence of a subsequence a such that (T,;), 7t,t) — (T, 7,t)
pointwise for £! a.e.t € R. Recall

(T,m,t) =0T L {m>t} —9(TL {m>t}),

so it suffices to prove the convergence of T,;y L {7 > t} and 9T,(;) L {7 > t}. Define
#j = me(||Tj|| + [[9T}||) and choose a such that p,,) is weak* convergent in C:(R¥) to
some finite Borel measure y. If t € R is not an atom of y, then

limso4 imsup; pa(n) ([t = 6, +0]) < limgor p([t — 6,8 +6]) =0.

Define x;(x) = max(0, min(1,5 !(7r(x) —¢t))) for all x € X. Then x; is Lipschitz, and
for f € Lipy(X), 7; € Lip1(X),

[(fdT: Ty L xo — Ty & {m > t})] </ |f1 N Tai Il

-1t 140]
and we obtain T, ;) L {7t >t} — T L. 7 > t pointwise. The same argument works for
dT,(;) - Furthermore, by Fatou’s lemma (theorem 1.5.5)

/anmfj N((T,, 7, £)) dt < liminf, /IR N((T,(;), 7, %)) dt

= liminf; N(T,;) L d7t) < Lip(7r) - sup; N(T}) < 0.
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Hence, for a.e. t € R, there exists a subsequence g = B; of a such that (N({Tg(;), 77, t)))
is bounded. Finally, for bounded sizes, as for the norms, we use the size estimate in
theorem 5.4.9 to obtain subsequences for which the slices’ sizes are bounded. — [

Proof of theorem 5.5.10. The proof is by induction on k. First, let k = 0. In the rectifiable
case, let A C supp T be any finite set. Then there is € > 0 such that that the balls B(a,¢),
a € A, are disjoint. By the lower semi-continuity of mass, for large j, each of the B(a, ¢)
intersects supp T;, i.e. T] =Y e A; zxajéa ,and foralla € A, there exists a’ € A]- such that
d(a,a") < e. By the bounedness of size, #A; is bounded, and it follows that T is a finite
sum of point masses. Thus, T € Ry(X).

In the integer-rectifiable case the bound on size follows from the bound on mass,
since for T = Y; a;0x;, || T|| = ¥;]a;|dx,; . Thus, the limit current is rectifiable, any we need
only to see that its coefficients are integral, we is immediate from pointwise convergence.

Back in the rectifiable case, let k > 1 and assume the statement is true for k — 1. We
check that the assumptions of theorem 5.5.2 are verified. Write 7 = (711, 77) , and set

S=TL dﬂ'l, S]IT]L d7‘[1, St: <T,7‘L’1,t>, S]'t: <T]',7T1,t>.

From lemma 5.5.11, we find that for £! a.e. t € R, S; is the limit of a subsequence of Sit
with bounded sizes and bounded norms. By the inductive hypothesis, S; € Ry_1(X) for
a.e. t. Forany such t, (T, 7, (t,y)) = (S, ,y) € Ro(X) for LF ae. y € RF-1. Hence
(T, m,x) € Ro(X) for LF a.e. x € R¥. By theorem 5.5.2, this implies T € Ro(X). The
integer-rectifiable case follows in the same manner. O

Boundary Rectifiability Theorem 5.5.12. Let T € I;(X). Then 9T € I;_1(X) .

Proof. Since 0T = 0 for k = 0, only the case k > 1 is interesting. Moreover, normality of
dT is clear since 9°T = 0, so we only need to establish integer-rectifiability. We proceed
by induction on k, and begin withk = 1. Let U C X be open and set ¢ = dist(u, X\ U).
Then

(I{psy :0T) = (1: 0T L {@ > t})
=(1:0(TL {¢o>t}))+(1:(T,9,t))=(1:(T, 9, 1)) € Z

for £! a.e. t > 0, by locality, theorem 5.3.3 (i), theorem 5.4.4 (iii), and theorem 5.4.9.
By continuity of T, we obtain (1y; : 0T) = (ly>o : 0T) € Z. By theorem 5.3.3 (i),
9 € Zy(X).

Assuming the statement for k, we prove it for k + 1. Indeed, suffices to prove
(9T, 7t, x) integer-rectifiable for 7 € Lip(X,RF), by theorem 5.5.2. Write 7 = (711, 77) .
Then (9T, 11, t) = —9(T, 73, t) is generically integer-rectifiable by the inductive hypoth-
esis and the assumption on T. Then so is (dT, 7, (t,y)) = ((dT,m,t), 7T, y). Hence

follows the assertion. O
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Besides the central closure and boundary rectifiability theorems, we briefly digress to
give the following non-trivial characterisations of rectifiability as further corollaries to
the rectifiability of slices theorem 5.5.2.

Theorem 5.5.13. Let T € Ni(X). Then T € Ry(X) if and only if it is concentrated on a
Borel set o-finite for H*.

Proof. The necessity is clear. Let S be an H* o-finite set on which T is concentrated. Let
m € Lip(X,R¥). Since T is concentrated on a separable set, we find by corollary 2.2.3
that for £F a.e. vy € R¥, SN~ (y) is countable. Since the slices (T, 7, x) are concen-
trated on S N 77~ !(x), we find (T, 7, x) € Ro(X), and theorem 5.5.2 gives the desired
conclusion. O

Theorem 5.5.14. Let T € N (X) . Then the following holds.
(i). Wehave T € I;(X) if and only if p, T € Z;(R*1) for all ¢ € Lip(X, R*+1).

(ii). We have T € I;(X) if and only if 7t (T L B) € Zx(IR¥) for all 7w € Lip(X,R¥) and
B e B(X).

(iii). If X = R" with any norm, then T € Ry(X) if and only if . T € Ry (IR*1) for all
¢ € Lip(X, RF1).

Proof. All the conditions are necessary. In every case, it suffices to prove T, = (T, 7, x)
generically (integer-) rectifiable for any fixed 7w € Lip(X)R¥, by theorem 5.5.2. Let I be
the countable family of open sets from lemma 5.4.10 and denote ¢i; = dist(, X \ U) for
Ued.

In the situation of (i), let g : R**! — R be the projection onto the first component, and
p : RE1 — RRF the projection onto the last k components. Applying proposition 5.4.12,
we obtain an L*-negligible N C R* such that for all x € R*\ Nand U € U,

PueTx = qo((@u, )e T, p,x) € Zo(R) .

In particular, (1y : Tx) = (1jpeo| : ueT) € Z forall x € R¥\ N and U € U . The same
is true for B € B(X) in place of U. Thus follows (i). Statements (ii) and (iii) are similar,

where for (iii) one proceeds as in the proof of theorem 5.3.3 (iii). ([l

Remark 5.5.15. To this point, the presentation follows [AK0Oa] closely. We also mention
that [Amb94, proof of th. 2.3] was essential for the comprehension of [AK00Oa, lem.7.3,
th. 7.4], which are lemma 5.5.9 and theorem 5.5.7 in our enumeration.

5.6 Generalised Plateau’s Problem

5.6.1. As usual, we assume that X is metric, complete, and contains a dense subset
of Ulam cardinality. The following theorem, the solution of DeGiorgi's generalised
Plateau’s problem, is the culmination of our study of currents.
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Existence of Minimising Currents 5.6.2. Let X be a Hilbert space and S € I;(X), such
that 0S = 0 and supp S is compact. Then there exists T € Iy + 1(X) such thatoT =S, T

has compact support, and

M(T) = inf{M(R) | R € I;1(X), 9R = S} .

Remark 5.6.3. Theorem 5.6.2 is not the most general setting in which Plateau’s problem
can be solved. Ambrosio and Kirchheim [AKO00a, th. 10.6] solve it for so-called isoperi-
metric Banach spaces Y = E* where E is separable. However, their proof requires the use
of Gromov’s compactness theorem. Wenger [Wen04] circumvents the use of this theo-
rem, thereby showing that any Banach space is isoperimetric. He then proceed to extend
the solution of Plateau’s problem to all dual Banach spaces (not necessarily weak* sep-
arable) and all Hadamard spaces (i.e. non-positively curved and geodesically complete

spaces).

5.6.4. The essential ingredients in the theorem’s proof, the compactness of normal cur-
rents and the closure theorem, have already been assembled. The sole remaining step
is the existence of solutions of the equation 0T = S with some control on their mass,
commonly refered to as the existence of filling currents.

Cone Construction 5.6.5. Let T € N(X), and define, for t € [0,1], metric functionals
tx Ton[0,1] x X by

(fdm:txT) = (fidm: T) where f;=f(t,u) and dm =dmy A ANdmg .

Furthermore, define the cone of T to be the metric function [0,1] x T given by
k+1 ) 1 37‘[}
(fdm:Tx[0,1]) = Z(_l)lﬂ/o <ftat] drts : T> dt .
j=1

If supp T is bounded, then [0,1] X T € Nj;1(X), t x T € N¢(X),
10, 1] < T| < (£' L [0,1]) @ [IT]l,

and
9([0,1] xT) =1xT—-0xT—[0,1] x 9T .
Moreover, if T is integral, then sois [0,1] x T'.

Proof. First, we prove that [0,1] x T is normal. Clearly, it is a multilineare metric func-

tional. By

im0 < X [ (A% dmy )

=170
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k+1
Y T]Lip(m; //ft 4| T| dt

j=1i#]

k+1

1
<) [Tuip(m) [ f1dITdc

we find that [0,1] x T has finite mass and ||[0,1] x T|| < (£' L [0,1]) ® ||T||. We now
establish the equality

(fdr:0([0,1] x T) +[0,1] x 0T) = (fdm:1xT—0xT) (%)

for the special case of f, 7t; differentiable wrt. t, such that aaj? , agt’ - are bounded Lipschitz

functions. Indeed, (fdr : t x T) is a Lipschitz function of ¢, and for a.e. t € [0,1],

d
g(fdn (txT)
= 1im<f*+hh_ft Aty : T>—|—

h—0

k ‘ T ven
Z(—l)]'H <ftd<]t+h> ANdmy A - dnj—l,t N dnj+1,t+h AN dﬂk,tJrh : T>
=1

= (Gt} (e () ).

Thus, by the fundamental theorem of calculus,

(fdn:l><T—0><T):/01[<a£d7rt:T>+'k1(— f“<fd<aant’t>Adn]t T>}dt.
=

On the other hand, by the chain rule,
(fdm: 8([0,1] X T) +[0,1] x oT)

={(df Ndrt:[0,1] x T) + i(_1)1+1/1<f a:)Tt]t >dt

=1

= / < dﬂft >+
k ]+1 8 A7 aTC]t d d
]Zl ft at N ]t ft VAN ﬂ]t T :| t
=(fdr:1xT—-0xT).
This proves (x) in the special case.

We now prove (x) in general and the continuity axiom for [0,1] x T. Fix a Lipschitz
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function ¢ : R — [0, 1] with support in [—1,1] such that ¢(0) =1 = foz 0dL!. Note that
for any bounded Lipschitz function f : [0,1] x X — R,
1

fit, x) = S/Olg(s(s—t))f(s,x)ds forall (t,x) €[0,1] x X, e>0,

defines a function f¢ differentiable w.r.t. f such that the t-derivative is bounded Lipschitz
function. Moreover, f* — f (¢ — 04) with bounded Lipschitz constants.

Thus, if [0,1] x 0T is a current, then by continuity, the equation holds for arbitrary
fdm. But then 9([0,1] x 9T) is a current as the sum of currents. This implies the conti-
nuity axiom for [0,1] x T in the case f a characteristic function. By approximation (the
right hand side has finite mass because T is normal), it also holds in general. This shows
by induction that it suffices to prove the statement for k = 0. But then dT = 0, and
[0,1] x 9T is a current.

Thus, T is a current, and we have the equation, for any k. But the equation shows
that 9(T x [0, 1]) has finite mass, since this is the case for 0T . O

This theorem furnishes a surprisingly simple proof of the existence of filling currents,
due to Stefan Wenger [Wen(04]. We do not state it in its most general form.

Existence of Filling Currents 5.6.6. Let X be a Banach space and suppose that we are
given S € I(X), dS = 0, with r = diamsupp S < oo. Then there exists T € I;,1(X)
such that we have supp T C co(supp S),dT =S, and

IT|| < (k+1)r||S||, inparticular, M(T) < (k+1)rM(S) .

Proof. Fix xo € supp T. Let ¢ : [0,1] x supp T — X be defined by
p(t,x) =t(x —x0) +x9 forall x € suppS.

Then Lip(¢(s,x)) < rforall x € supp T, and Lip(¢(t,)) <t < 1forallt € [0,1]. Let
T = ¢e([0,1] X S). Then T € I;;1(X) and

IT = ¢4 (3([0,1] X 5)) = @u(1 X 5) — 9+ (0 x )
by theorem 5.6.5. Moreover,
(fdre: ga(txS)) = (fopud(mog):5),
S0 Pe(1x S) =S (91 = id) and @4 (0 x S) = 0 (¢ constant). Moreover,

k+1 01 a(nlogot) .
|<fd7T:T>|§;/O <foq)t]atd7'cog0tj:T>dt
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d||T|| dt

<3 [Ttip(mio 90 / /, ]foqot 7

=i

k+1

1
<(k+Dr[TLip(m)- [ [ IfoelalTiac!,
j=1

so the assertion follows by definition of mass. U
Remark 5.6.7.

(i). In the proof, ¢ can be replaced by any Lipschitz contraction. Thus, the results
to all metric spaces with a uniform bound on the Lipschitz constants of contractions
of bounded subsets, cf. [Wen04, prop. 5.4]. (Such a metric space is, in particular, con-
tractible.)

(ii). Note that the construction in the proof amounts to ‘suspension” within the space
of integral currents.

(iii). A more precise statement, the so-called isoperimetric inequality’, would remove

K£1 on the right hand mass.

the dependence on r at the expense of including the power
Such a theorem can be deduced from the above statement, and forms the main portion
of Wenger’s thesis [Wen04]. However, the above statement suffices for the solution of

Plateau’s problem in the case of Hilbert spaces.

Proof of theorem 5.6.2. Let r = diam supp S, which is finite. By theorem 5.6.6, the set
Y ={T el (X)| 0T =5, M(T) < r(k+1)M(S)}

is non-empty. In particular, M := infM(Y) = inf{M(T) | T € M(X), 9T =S} . Let
T; € Y, lim;M(T;) = M. Replacing T; by 7txe(T;) where K = co(supp S) is compact
and 7tx : X — K is the metric projection, which is 1-Lipschitz, and characterised by

|7tk (x) — x|| = dist(K, x) forall x € X,

we may assume supp Tj C K. Then sup;||Tj|| < M+ M(S) < co. By the compactness
theorem 5.4.2, extracting a subsequence, we may assume T; — T € Nj(X) point-
wise, and supp T C K is compact. In particular, T = lim;dT; = S. By the closure
theorem 5.5.10, T € I;,1(X) . This proves the theorem. O

Remark 5.6.8. The solution of Plateau’s problem in Hilbert spaces is from [AKO00a], the
modified cone construction and the existence of filling currents are from Wenger’s thesis
[Wen04].
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5.7 Intrinsic Representation of Currents

5.7.1. Having reformulated and solved Plateau’s problem in the framework of currents,
it is important to ensure that the result is indeed what we intended it to be, namely, we
need to see how integral currents correspond to countably k-rectifiable sets. We shall not
address the question of regularity of minimal filling surfaces, which is rather delicate,
albeit natural, given the classical formulation of Plateau’s problem.

5.7.2. We assume now that X be embedded in some Y = E* where E is a separable
Banach space. Let T = A--- AT, € AFY be a simple k-vector. Let J; be defined by
Jo = Jx(Ly) where L : RF — Yis given by L. (x) = 2}‘:1 x;T; . Then ] is well-defined,
since for 0; = A;7;, defining M) (x) = (A;x;), we have

k
Jan-ng = LTI Joiaeney -
j=1

The simple k-vector T is said to a unit simple k-vector if J; = 1. Clearly, any simple
k-vector is equivalent to a normalised one.

If S C X is countably k-rectifiable, then an orientation is a function

k
T=1A - AT%:S— \Y

such that 7; is a Borel function for each j, T(x) is a unit simple k-vector and Tan* (S, x) is
the span of 7;(x),j =1,...,k, for HFae xeS.

Given a Lipschitz map 7 : S — R, we define for H¥ a.e. x € S a p-covector
Apd°7t(x) by

Apd®7t(x) = dSmy(x) A - - AdSmp(x) € A\ Tank (S, x)* .

If p=kand f : R¥ — X is a Lipschitz map, then for H* a.e.y = f(x) € S, the defining
(chain) rule for the tangential differential gives

_ [det(ro f)'(x)]
Jk(fo(x))

where T, = f/(x)e1 A - -+ A fl(x)ex and the duality between k-vectors and k-covectors is

Je(d®7(x)) = [(J5 w s Apd®ri(y))]

given as usual by
(g A Axg s VA AEE) =det((x;: &) forall x; €V, & e V*

where V is any vector space. Since f was arbitrary, we conclude that for any orientation
cgof S,
Je(@m(x)) = [{o(x) : Aed®r(x))| forHFae xe€5S.
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Proposition 5.7.3. Let S C Y = E* be countably k-rectifiable where E is a separable
Banach space, & : S —]0,00[ a H* summable Borel function, and T an orientation of S .
Then

(fdm:[S,9,t]) :/Sf(x)ﬁ(x)<r(x):/\kdsn(x)>de(x) forall fdm € DF(X)

determines [S, 89, 7] € Ri(Y). Moreover, this current is in Z;(Y) if ¢ maps to N \ 0.
Conversely, any T € Ry (Y) (resp. T € Z(Y) is given in this way.

Proof. First, we prove that any T € Ry(Y) has this form. To that end, we consider
T = @.lg] where g € L1(R¥,R) (resp. L'(RF, Z)) is supported in some compact K, and
¢ € Lip(RF,Y) is bi-Lipschitz on K. Let L = ¢(K) and T any orientation of L. Let
e = Ik (fo(x)) "L @l (x)er A - - A @l (x)ex . Then 77, = 0(x)Ty(y) for some o(x) = £1and

det(rro @) (x) = o(x) - (Tyx) * M A r(p(x))) - Jx(fa(x)) for HFae xcK.
Then

(fam:T) = [ g-(fog)-detlmog) dct

= /L fFW3(@™ W)ole™ )1y : Aed®m(y)) dH (y)

by the change of variables formula corollary 4.1.6. Setting ¢(y) = g(x)o(x) for y = ¢(x)
(possibly changing the sign of 7) and S = LN {¢ > 0}, the assertion follows in the
special case. The general case follows by approximation with normal currents, i.e. theo-
rem 5.3.5.

That any triple as above induces a rectifiable current (resp. an integer-rectifiable cur-
rent) in the case E = RR¥ follows just as in proposition 5.2.3. The case S = @.(K) where
K is some compact in R¥ and ¢ is bi-Lipschitz then follows by the area formula. The

general case follows, as usual, from lemma 4.2.3. O

5.7.4. To give a definitive statement of the above proposition in a general metric frame-
work, we introduce the following concepts. A triple (S, 9, T) where S is a countably
k-rectifiable set in Y = E*, ¢ : S —]0,00[ an H* summable Borel function, and T an
orientation of S, is called an oriented k-rectifiable set. Two such oriented k-rectifiable sets
(5;,9;,7;),j = 1,2, are said to be equivalent if there exist subsets S} cSj, Hk(S]- \ S]’) =0,
and an isometric bijection f : S| — S, satisfying ¢; = ¢, o f and

AKdS f(x) T (x) = To(x) forall x € Sy,

AL 2 AFV — AFW being the linear map induced by any linear L : V — W.

Theorem 5.7.5. Let (S;, 9}, 7;) be oriented k-rectifiable sets in dual Banach spaces Y; = E]“f .
Then they are equivalent if and only if there is an isometry i : S| — S, H¥(S; \ §)=0,
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such that 91 = %, o7 and
1o[S1, %1, 1] = [S2, %2, ] -

In particular, they are equivalent if they represent the pushforward i]'.T of the same
rectifiable current T € R (X), X some metric space.

5.7.6. We shall not prove the theorem. The proof is based on standard arguments.
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